

SiliCycle[®] Catalog for the Pharmaceutical Industry

Drug Sy	nthesis	P. 15
	SiliaCat [®] Heterogeneous Catalysts	P. 17
	SiliaBond [®] Oxidants	P. 47
	SiliaBond [®] Reagents	P. 51
Drug Pu	rification & Analysis	P. 83
	SiliaMetS [®] Metal Scavengers	P. 85
	SiliaBond [®] Organic Scavengers	P. 115
	Silia <i>Flash</i> ® Irregular Silica Gels	P. 127
	SiliaSphere Spherical Silica Gels	P. 139
	SiliaBond [®] Chromatographic and Ion Exchange Phases	P. 143
	SiliaPlate [™] TLC Plates	P. 151
	SiliaSep Flash Cartridges	P. 155
CE AL	SiliaPrep [™] SPE Cartridges and Well Plates	P. 171
	SiliaChrom [®] HPLC Columns	P. 189

About SiliCycle

Founded in 1995, SiliCycle® Inc. is a worldwide leader in the development, the manufacturing and the purification requirements.

Our business extends to more than fifty countries worldwide and our customer portfolio includes companies in the pharmaceutical, biotechnology industries, contract research and manufacturing organizations as well as university laboratories and hospital research centers.

The mission of SiliCycle is to develop and market innovative silica products of high value to customers and make a technical contribution to their work.

At SiliCycle, we are at the forefront of the chromatography industry, owing to the extraordinary purity of our silica gels and our capacity to rapidly adapt these gels to meet the specific requirements of pharmaceutical professionals and university scientists.

We lead the way in offering innovative products, such as Silia*Cat*® heterogeneous catalysts, Silia*MetS*® Metal Scavengers, SiliaBond® functionalized silica gels, SiliaFlash® Irregular silica gels, IMPAQ® angular silica gels, Silia*Sphere*[™] spherical silica gels, Silia*Sep*[™] flash cartridges, Silia*Prep*[™] SPEs and Well Plates, Silia*Plate*[™] TLC plates, and Silia*Chrom*[®] HPLC columns.

We offer a wide variety of first-rate Ultra Pure Silica Gels. Our automated manufacturing process, which includes acid washing and multiple analyses, is continuously optimized to ensure high purity and a low percentage of fine particles, thereby guaranteeing optimal performance.

We are committed to provide the highest quality products and services in the industry.

5

Table of Contents

About SiliCycle
SiliCycle for the Pharmaceutical Industry8
Drug Discovery
Drug Development
Process and Manufacturing9
Word from the President
Word of the Vice-President of R&D 11
Importance of Quality Control12
Drug Synthesis
Silia <i>Cat</i> Heterogeneous Catalysts17
Silia <i>Cat</i>
What are Silia <i>Cat</i> Heterogeneous Catalyst?
Features and Benefits of Silia <i>Cat</i> Catalysts19
Silia <i>Cat</i> Heterogeneous Catalysts Product Range20
Catalyst Screening Service
Silia <i>Cat</i> - Regulatory Information22
Experimental Procedures and Optimization23
Silia <i>Cat</i> 's Compatibility with New Technologies24
Catalysis Definitions and Calculation24
Suzuki Coupling Using Pd-based Silia <i>Cat</i> 25
Suzuki Coupling Typical Experimental Procedure
Heck Coupling Using Silia <i>Cat</i> DPP-Pd & S-Pd28
Heck Coupling Typical Experimental Procedure
Sonogashira Coupling Using Silia <i>Cat</i> Catalysts
Sonogashira Coupling Typical Experimental Procedure
Stille Coupling Using Silia <i>Cat</i> Pd Catalysts32
Stille Coupling Typical Experimental Procedure
Kumada Coupling Using Silia <i>Cat</i> Pd Catalysts34
Kumada Coupling Typical Experimental Procedure
Selective Hydrogenation of Nitroarenes Using Silia <i>Cat</i> Pt ^o
Selective Hydrogenation of Nitroarenes Typical Experimental Procedure
Selective Debenzylation Using Silia <i>Cat</i> Pd ⁰ 38
Selective Debenzylation Typical Experimental Procedure
Hydrosilylation Using Silia <i>Cat</i> Pt ^o
Hydrosilylation Typical Experimental Procedure41
Oxidation Using Silia <i>Cat</i> TEMPO42
Oxidation Typical Experimental Procedure44
Silia <i>Bond</i> Oxidants
Silia <i>Bond</i> PCC (<i>R24030B</i>) and Silia <i>Bond</i> PDC (<i>R24530B</i>)48
Silia <i>Bond</i> Potassium Permanganate (<i>R23030B</i>)

Amide Coupling Reagents..... SiliaBond Carbodiimide (R70530 SiliaBond Ethyl-Dimethylamino C SiliaBond Dichlorotriazine (R522 SiliaBond HOBt (R70730B) SiliaBond Cyanoborohydride (R66 SiliaBond Carbonate (R66030B) for SiliaBond DMAP (R75530B) for Ba SiliaBond Tosic Acid (R60530B) in SiliaBond TBD (R68530B) for Willi SiliaBond AICl, (R74530B) for Fried SiliaBond Reagents and Scavenger SiliaBond Reagents and Scavenger Compatibility With New Technologie Flow Chemistry Applications Acylation Reactions Using SiliaB Friedel-Craft Alkylations Using S

Drug Purification and Analysis
Silia <i>MetS</i> Metal Scavengers
Metal Scavenging with Silia <i>MetS</i> .
Silia <i>Bond</i> Metal Scavengers are be
Introduction
What are Silia <i>MetS</i> Metal Scavenge
Silia <i>MetS</i> - Regulatory Information
Silia <i>MetS</i> Product Range
Features & Benefits of Silia <i>MetS</i> M
Metal Scavenging Screening Servio
Silia <i>MetS</i> - Typical Experimental P
Silia <i>MetS</i> Compatible with New Te
Experiment Optimization with Silia
Determining the Optimal Amount
Silia <i>MetS</i> Selection Guide
Silia <i>MetS</i> - A GlaxoSmithKline Case
Ruthenium Scavenging with SiliaM

<i>DB</i>)52
Carbodiimide (<i>EDC</i>) (<i>R70630B</i>)
730B) for Reductive Aminations
or Henry Reactions62
aylis-Hillman and Acylation Reactions
n Fischer-Speier Esterifications
iamson Etherifications
del-Crafts Alkylations and Acylations
rs for Typical Coupling Reactions
rs for Common Organic Reactions
es
ond DMAP76
Silia <i>Bond</i> Aluminum Chloride
ng Silia <i>Bond</i> Piperidine78
Group using Silia <i>Bond</i> SCX79
d Carbodiimide80
a <i>Bond</i> Cyanoborohydride81
Carbonate
ecome Silia <i>MetS</i> Metal Scavengers!86
ers?
etal Scavengers90
ce
rocedures
chnologies
a <i>MetS</i> 94
of Silia <i>MetS</i> 96
e Study ¹
<i>letS</i>

Table of Contents (Con't)

Tin Scavenging with Silia <i>MetS</i>	104
Osmium Scavenging with Silia <i>MetS</i>	104
Multiple Metal Scavenging with Silia <i>MetS</i>	105
Silia <i>MetS</i> Success Stories Published by Customers	106
An Amgen Case Study ¹	106
An AstraZeneca Case Study	108
A Pfizer Global R&D Case Study	108
An Abbott Laboratories Case Study	109
A Johnson & Johnson Case Study	109
Silia <i>MetS</i> Leaching & Stability Studies	
Silia <i>MetS</i> Metal Scavengers Ordering Information	112
Silia <i>Bond</i> Organic Scavengers	115
Scavenging Undesired Compounds: Electrophile Scavengers	117
Scavenging Undesired Compounds: Nucleophile Scavengers	118
Catch and Release of the API	123
Silia <i>Bond</i> Ordering Information	
Silia <i>Flash</i> Irregular Silica Gels	127
Chromatography at SiliCycle	128
Silia <i>Flash</i> 's Exceptional Characteristics	130
Silia <i>Flash</i> Ordering Information	134
A Particle Size for Each Application	135
Silica Selection Guide	
SiliaSphere Spherical Silica Gels	139
Silia <i>Sphere</i> Monodispersed Spherical Silica Gels	140
Silia <i>Sphere</i> PC (<i>Preparative Chromatography</i>)	142
IMPAQ Angular Silica Gels	142
Silia <i>Bond</i> Chromatographic and Ion Exchange Phases	
Silia <i>Bond</i> Chromatographic Phases	144
Silia ^{Bond} Reversed-Phases	145
Silia <mark>Bond</mark> Normal Phases	147
Silia <i>Bond</i> Ion Exchange Phases	
SiliaPlate TLC Plates	151
Silia <i>Sep</i> Flash Cartridges	155
Silia <i>Sep</i> Features & Benefits	
Silia <i>Sep</i> Flash Cartridge Design	
Silia <i>Sep</i> Portfolio Overview	
Silia <i>Sep</i> Ordering Information	
Silia <i>Sep</i> Solid-Load Cartridges	
Silia <i>Sep</i> Plungers	
SiliaSep Accessories for System Conversion	
Silia <i>Sep</i> on Biotage™ Instruments	
Silia <i>Sep</i> on FlashMaster™ Instruments	163

Silia <i>Sep</i> Reproducibility	164
Silia <i>Sep</i> Superior Performance	164
Better Separations with Silia <i>Sep</i> - Higher Plate Count (N)	164
High Resolution with Silia <i>Sep</i> HP	165
Silia <i>Sep</i> HP - Save Time with Faster Flow Rate	165
Silia <i>Sep</i> HP - Higher Loading Capacity	165
Silia <i>Sep</i> XL - Superior Resolution	166
SiliaSep OT (FlashMaster™ Compatible Flash Cartridges)	167
SiliaSep BT (Biotage™ "i" Compatible Flash Cartridges)	168
Silia <i>Sep</i> Sorbent Selection Chart	169
Silia <i>Sep</i> Loading Chart	170
SiliaPrep SPE Cartridges and Well Plates	171
Specifications	172
Silia <i>Prep</i> Accessories	173
Standard Method Development Procedure	174
Product Selection Guide	175
Silia <i>Prep</i> Most Popular Phases	178
Silia <i>Prep</i> Carbonate	178
Silia <i>Prep</i> Propylsulfonic acid and Tosic Acid	179
Silia <i>Prep</i> TMA Acetate nec (SAX-2)	180
Silia <i>Prep</i> Reversed-Phases	182
Silia <i>Prep</i> Normal Phases	185
Silia <i>Prep</i> Ion Exchange Phases	186
Silia <i>Prep</i> Mixed Mode Phases	187
Silia <i>Prep</i> CleanDRUG	188
SiliaChrom HPLC Columns	189
Cross-References Silia <i>Chrom</i> HPLC columns	194
Silia <i>Chrom</i> Selection Guide	195
Silia <i>Chrom</i> AQ C8 and AQ C18	196
Silia <i>Chrom</i> dt C18	200
Silia <i>Chrom</i> SB C18 and C8	202
Silia <i>Chrom</i> XT C18 and XT C18 Fidelity	204
Silia <i>Chrom</i> XDB C18 & XDB C8	206
Silia <i>Chrom</i> XDB1	207
Silia <i>Chrom</i> XDB2 C18	211
Silia <i>Chrom</i> HILIC	212
Silia <i>Chrom</i> SCX-SAX	213
Silia <i>Chrom</i> Chiral Phases	214
Other Silia <i>Chrom</i> Products	215
Silia <i>Bond</i> & Silia <i>Cat</i> Listing	224
SiliCycle Products and Mettler-Toledo MiniBlock	228
Contact Us - Order Now	217

SiliCycle for the Pharmaceutical Industry

Drug Discovery

SiliCycle is a recognized industry leader of innovative purification and synthesis methods for more efficiency in drug discovery.

10

Our products are particularly well suited for drug discovery chemists that perform amide couplings, reductive aminations, metal mediated couplings, etc., on a daily basis. Our supported reagents and catalysts greatly simplify the reaction and work-up process, enabling chemists to run more reactions and generate more compounds. Furthermore, we have a whole range of flash cartridges and TLC plates to assist chemists in the purification of these compounds.

We are your number 1 metal removal solution provider, and your partner of choice for your synthesis, heterogeneous catalysis, analysis and all of your purification requirements.

We commit ourselves to offer you best quality products accompanied by expert technical support at a competitive price!

Drug Development

SiliCycle designs, develops, and manufactures innovative products for world class pharmaceutical companies with gram to multi-ton production capabilities.

For large scale purifications, our state-of-the-art facility allows us to produce high quality chromatographic phases in large batches to supply the most demanding applications.

We also produce large amounts of Silia*MetS* Metal Scavengers for the selective removal of spent metal catalysts traces from active pharmaceutical ingredients (API). These ligands bound to silica gel, in bulk or in cartridge formats, are especially designed to remove metal traces down to single digit ppm levels fast and reproducibly. A simple filtration is then performed to get rid of the silica scavenger with the metals entrapped.

We produce high quality chromatographic phases for any separation project, large or small. We can supply large quantities of normal, reverse, and ion-exchange phases that will give you the best performance at a competitive price.

Our new line of SiliaCat Heterogeneous Catalysts are also very valuable tools for scale-up and process. These catalysts are easy to use and very efficient. At the end of the reaction, a simple filtration removes the spent catalyst and leaves the reaction mixture free of any metal traces.

Process and Manufacturing

As a world-wide supplier of premium silica-based products for pharmaceutical and biotechnology drug manufacturers, SiliCycle has become a value-added, strategic sourcing partner for our customers. At SiliCycle, we truly understand the needs and challenges you encounter when trying to satisfy both the regulatory requirements and the need for economical validated manufacturing. Listed below are some of the solutions SiliCycle provides to better serve you:

On-time Delivery

As a critical component supplier, SiliCycle understands the importance of maintaining and managing its inventory. As a manufacturer of hundreds of tons of silica-based products, you can feel confident that we will deliver your product on-time.

Batch Reservations

For our customers that do not have the storage capacity, SiliCycle can reserve specific batches of finished product and ship upon request.

Packaging sizes

The wide range of available packaging sizes and formats help eliminate waste and reduce release testing.

Batch Sizes

SiliCycle's proprietary manufacturing processes can easily be scaled-up to meet the batch size requirements of our customers.

Customized Products

Since SiliCycle controls the manufacturing process, we can customize the particle size distribution, loading, defined water content and any other specification our customers require.

Regulatory Filing

SiliCycle will work with your quality team to provide the necessary documentation and specific analytical testing needed for your regulatory filings.

Metal Scavenging Screening Service

Under a CDA, we will screen a customer's metal contaminated reaction mixture against our SiliaMetS[®] Metal scavengers to determine the best scavenger and the best conditions.

Catalyst Screening Service

Looking for the right catalyst to use? SiliCycle's R&D team can find the optimal conditions for you.

Custom Phase Synthesis

We have the knowledge to graft any function (small molecules, peptides, sugars, and proteins) onto silica gel and we do that for a customer' specific application for catalysis, support, or chromatography.

CONTACT US for more details.

Word from the President

Dear valued customers,

It is with great pleasure and pride that we present our new catalog tailored for the pharmaceutical industry. This document is specifically dedicated to meet the needs of players in the fields of drug discovery, drug development, and drug manufacturing.

For over 15 years, we have been designing, manufacturing, and commercializing high performance silica-based products for chromatography, analytical and organic chemistry. Over these years, thanks to our innovations and the guality of our products and services, we have positioned ourselves among the leaders in the fine chemical industry. Our business now extends to over fifty countries, and we are still growing. Today, we enjoy the trust of major pharmaceutical companies including Abbott, Amgen, AstraZeneca, Eli Lilly, GlaxoSmithKline, Johnson & Johnson, Novartis and Pfizer, just to name a few.¹

From Montreal to Sanghai, from New Jersey to Paris or Mumbai, at SiliCycle, we are committed to delivering the same quality products and services, no matter where you are. Our ISO 9001:2008 certification is a testimony to the importance we place on quality. Likewise, our C-TPAT certification ensures an unfailing supply to our customers worldwide. For our North American customers, we have multiplied our sales staff and customer service agents. For our European clients, we now have a warehouse in Frankfurt, Germany. For our customers in India and Europe, we have local, Ph.D.-level staff on hand to better serve you in real time. The same will be available soon for our Chinese customers as well.

To support increasing demand, and ensure our continued growth, we recently moved into a brand new facility, equipped with cutting-edge technology and multi-ton capability. As a partner of choice for your metal removal, purification, catalysis, analysis and synthesis needs, we offer you a full range of products available in all the formats required by the industry, making us "The one stop shop".

Presented herein, you will find all the information you need to choose the right products for your applications. Choose from our famous Silia*MetS* - the number 1 Metal Scavengers in their category; Silia*Cat* - our new high-performance family of heterogeneous catalysts; the versatile SiliaBond - a complete set of functionalized silica-based products; SiliaFlash - the best quality for price of all irregular silica gels; SiliaSep - Flash cartridges; Silia*Prep* - SPE cartridges; Silia*Chrom* - HPLC Columns; Silia*Sphere* - spherical silica gels; IMPAQ - angular silica gels; SiliaPlate - TLC plates; and many others.

Much more than just products, SiliCycle's team will support you in your research and your large-scale production needs. As a human size company, I can guarantee you that our highly skilled people will give you a personalized service. Contact us and see for yourself how easy – and friendly – it is to do business with SiliCycle.

Most of all, I want to thank you for your trust and business over all these years. Enjoy our new catalog. Hopefully, it will become a reference tool for you, which was our goal when we set to design it.

Hugo St-Laurent president & CEO

¹Please note that the names of the companies are listed in alphabetical order, and do not reflect in any way an order of importance.

Word of the Vice-President of R&D

Dear fellow chemists,

The publication of a new catalog has been an interesting time for the R&D group. We were reminded of the hard work that has taken place since our last catalog outing: the new products, the applications, and the services. It is with great pride that our researchers see their projects succeed, the products come to market, and other chemists benefit and develop new medicines that in turn help all of us.

For all of the researchers, chemists, students, and other scientists in drug discovery, drug development and production, and university laboratories, we have silica-based products that will meet and exceed your chromatography, purification, and synthesis needs.

Over the years, we have developed extensive knowledge of silica gel and the ways it can be modified to meet the demands of diverse applications. From chromatography phases for your most demanding separations to metal scavengers used in the selective removal of spent catalysts from active pharmaceutical ingredients and our new SiliaCat catalysts, we have products that make running your applications easier.

We are also able to make custom phases for you. We have already anchored small molecules, peptides, sugars, and even enzymes for different customers. If your project would benefit from special silica-bound materials, contact us; we are up to the challenge! Finally, we also have a team of chemists that can screen your metalcontaminated products, and find the best conditions and the best scavenger for your needs. We can also find the right catalyst for you and determine the optimal conditions for you. Please contact us to get more information about this service.

I hope that you will enjoy using our products as much as we enjoyed developing them. Happy chemistry,

François Béland, Ph.D., Chemist vice-president, R&D

12

SiliCycle®

Importance of Quality Control

The Quality Control Department's objective is to provide default-free products. In light of this goal, we have determined the critical points that need to be addressed for each product line. These points are based on customer's and Account Managers' recommendations as well as on our employees' scientific knowledge.

Each product family has its own quality control procedures, which are strictly adhered to. QC test results are checked and confirmed by the person in charge of them before being cleared for shipping. Complete procedures for each product line are available upon request.

Thus, SiliCycle is committed to high quality standards. In doing so, every product meets the quality specifications our customers demand. All products are shipped with a Certificate of Analysis (CofA) and a sample from every batch is kept for subsequent analysis. If you feel that the product you have received does not meet these specifications, please contact us and we will make sure you are satisfied.

Bare Silica Gel

The backbone of most of SiliCycle's products is Silia*Flash* F60 (40-63 μm, 60 Å) silica gel. It provides superior performance for chromatographic applications due to its narrow particle size distribution and high purity.

Before functionalization, every silica is rigorously characterized and analyzed by the procedures below to ensure lot-to-lot reproducibility.

Functionalized Silica Gel

The process for functionalizing the silica is highly dependent on the group being attached. However, it is still possible to functionalize 90% of the surface, verified by ²⁹Si MAS NMR. The remaining 10% of the surface may be endcapped to provide a completely inert support. After being functionalized, the product is submitted to further analysis and quality control as outlined below.

Analysis Descriptions

Elemental Analysis of Organic Compounds

Silia Flash silica gel has a very low organic content. All lots are subjected to elemental analysis to determine the carbon, nitrogen and sulfur levels.

Total Trace Metal Analysis

To improve the quality of the separation, SiliCycle manufactures silica gels with very low traces of metal content. All silica gels are analyzed for more than 45 metals by ICP-OES down to ppm, and reach up to 99.4% silica purity. This removes any issues from metal oxides that may act as Lewis acids and prevents «Tailing» of most polar compounds (frequently ionizable) that can be caused by silica with a high metal content.

Surface Area and Porosity Analysis

The efficiency and reliability of silica gel depend on its surface condition. We use the Brunauer, Emmet, and, Teller analysis to determine the surface area, and the Barret-Joyner-Hatenda method to determine the pore diameter and pore volume. A larger surface area results in more contact or interaction with the analyte, thereby increasing the segregation of different products. Pore diameter and pore volume permit semiexclusion chromatography where smaller molecules fit into pores more easily than larger ones. This justifies the use of several types of silica to achieve better discrimination in chromatographic separations.

Particle Size Distribution Analysis

Particle size distribution is determined by laser diffraction. Usually, more than 90% of the silica gel is kept within the appropriate range.

Water Content Analysis (silica gel activity)

The amount of water on the silica's surface affects chromatographic performance. An anhydrous silica gel will be extremely polar, while a wetted one will be considerably less polar. Every batch is carefully adjusted to a specific percentage of water content.

pH Analysis

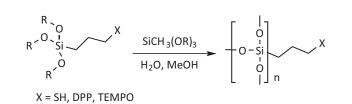
The pH can increase the retention of some ionizable compounds. However, some products can become hydrolyzed or rearranged when in contact with acidic silica. A neutral pH, with a range between 6.5 and 7.5, is the most important factor in determining the reliability and inert behavior of the silica. This pH test involves suspending the silica gel in pure water (5% w/w).

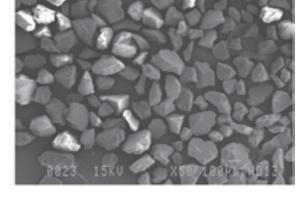
Quality Control							
Type of Analysis	Performed by:						
Bare Silica Gel	1						
Carbon, nitrogen & sulfur content	Elemental analyzer						
Total trace metal	ICP-OES						
Surface area & porosity	Nitrogen adsorption analyzer						
Particle size distribution	Laser light diffraction						
Tapped density analysis	Density measurement						
Water content	Moisture balance						
рН	pH-meter						
Functionalized Silica Gel	^						
Residual solvent content	Moisture balance						
Specific reactivity analysis	GC-FID, GC-MS, LC-MS/MS, ICP-OES						
Organic function signature	Infrared spectroscopy						
Purity analysis	GC-MS						

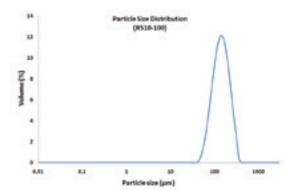
14

Silia Cat[®] Heterogeneous Catalysts

Catalytic Reactions with SiliaCat®


20

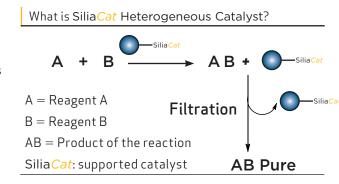

Advantages of using Silia*Cat*[®] heterogeneous catalysts over competitive products include:


- High stability
- Rigid & Porous Structure (no swelling)
- Compatibility with a wide range of solvents
- Ease of use: no swelling or static charge
- Leach-proof
- High turnover number (TON)
- Fast kinetics
- Accurate loading

The SiliaCat Matrix

Inspired by the ORganically MOdified SILica (ORMOSIL) technology, the SiliaCat family is composed by new and innovative catalysts. Resulting from the co-condensation of two organosilane monomers by the sol-gel process (confer condensation mechanism below), the hybrid organic-inorganic materials present the highest stability and reactivity available with heterogeneous catalysts. Furthermore, the high cross linked framework presents an unmatched resistance, significantly better than the usual post-synthesis functionalized ligand.

What are SiliaCat Heterogeneous Catalyst?


Usually, heterogeneous catalysts supported on a silica matrix are immobilized by post-modification of the inorganic support. These supports, however, present a high degree of leaching due to the poor stability of the immobilized phase. With Silia*Cat* Heterogeneous Catalysts, the ligand is directly cross linked in an organic-inorganic framework. This results a high degree of stability of the catalysts. Compared to homogeneous catalysts, Silia*Cat* exhibits a good reactivity and selectivity with one of the major advantages being that the catalyst is eliminated from the reaction mixture by a simple filtration. Forget your purification problems with our Silia*Cat* catalysts family.

Features and Benefits of SiliaCat Catalysts

Features & Benefits of Silia <i>Cat</i>	
Features	Benefits
Inertness within entrapped molecules	High conversion and yield
Reagent concentrated at the surface of the material	Reliable and reproducible synthesis
Robustness	High thermal and mechanical stabilities
Rigid and porous structure	No swelling, solvent independent and air stable Conditions do not have to be inert
Leach-proof organoceramic matrix	No contamination of APIs
High and accurate catalyst loading	Less catalyst required over competitive products
High turnover number (TON)	Catalytic amount (< 1 mol %)
Reusability	Multi-uses possible
Ease of handling and purification	Free flowing, no static charge Easily removed by simple filtration
Ease of scalability	Scalable from mg up to multi-ton scale
Flexible formats	Amenable to use in SiliaSep & SiliaPrep Cartridges
Available in bulk quantities	Can be delivered in large quantities and always in stock

The process for using Silia*Cat* Heterogeneous Catalysts is outlined in the scheme below.

Silia*Cat* Heterogeneous Catalysts Product Range

SiliCycle, a leader in functionalized silica gels, has developed various catalysts at competitive prices.

Silia <i>Cat</i> He	eterogeneous Ca	talysts Portfolio*							Silia <i>Cat</i> Hete	rogeneous Cataly	sts Portfolio
				Typical	Silia Cat Typical Characteristics						
Silia <i>Cat</i> Name	Product Number	Structure	Brief Description	Applications	Color	Endcapping	Molecular Loading	Typical Tap Density	Solvent Compatibility	Prolonged Storage	Silia <i>Cat</i> Name
Silia <i>Cat</i> DPP-Pd	R390-100	O-Si O-Si O I n	The significant costs associated with precious metal catalysts and their tendency to remain in organic products has generated interest for solutions that increase reactivity and can enable the recovery and reuse of these metals. Silia <i>Cat</i> DPP-Pd is a unique diphenylphosphine palladium (II) heterogeneous catalyst made from a leach-resistant organoceramic matrix.	Suzuki, Heck Sonogashira, Kumada, Stille	Yellow	Yes	≥ 0.2 mmol/g	415 g/L	All solvents, aqueous and organic	Keep dry	Silia <i>Cat</i> DPP-Pd
Silia <i>Cat</i> S-Pd	R510-100	- O-Si O-Si O I n	The significant costs associated with precious metal catalysts and their tendency to remain in organic products has generated interest for solutions that increase reactivity and can enable the recovery and reuse of these metals. Silia <i>Cat</i> S-Pd is a unique thiol-based palladium (II) heterogeneous catalysts made from a leach-resistant organoceramic matrix.	Suzuki, Heck Sonogashira, Kumada, Stille	Red - Orange	Yes	≥ 0.3 mmol/g	550 g/L	All organic solvents	Keep dry	Silia <i>Cat</i> S-Pd
NEW PRODUCT SiliaCat Pd ^o	R815-100	$ \begin{bmatrix} $	Silia <i>Cat</i> Pd ^o is a new series of patent-protected sol-gel-entrapped Pd nanocatalysts. It is made from highly dispersed Pd nanoparticles (<i>uniformly in the range 4.0-6.0 nm</i>) encapsulated within an organosilica matrix.	Suzuki, Heck Sonogashira, Kumada, Stille, Selective debenzylation, Selective hydrogenation	Dark brown to black	Yes	-	-	All solvents, aqueous and organic	Keep cool (< 8 °C) Under Argon	Silia <i>Cat</i> Pd ^o
NEW PRODUCT SiliaCat Pt ^o	R820-100	$ \begin{bmatrix} $	Silia <i>Cat</i> Pt ^o is made of organosilica physically doped with nanostructured platinum (0), and is both stable and efficient. This catalyst was successfully prepared by a novel and simple sol-gel route. In the new procedure, Pt nanoparticles (<i>uniformly</i> <i>in the range 1.7–3.15 nm</i>) are encapsulated via an alcohol-free sol-gel process typical of enzyme sol-gel encapsulation.	Selective reduction of nitroarenes, Hydrosilylation	Dark brown to black	Yes	-	-	All solvents, aqueous and organic	Keep dry Under Argon	Silia <i>Cat</i> Pt ^o
Silia <i>Cat</i> TEMPO	R723-100	$ \begin{bmatrix} 0 \\ 0 \\ -Si \\ 0 \\ 0 \end{bmatrix}_{n}^{H} $	Silia <i>Cat</i> TEMPO is a new oxidizing catalyst made from a proprietary class of organosilica-entrapped radicals. This encapsulation process confers enhanced reactivity and properties. The leach-resistant organoceramic matrix makes Silia <i>Cat</i> TEMPO highly efficient and selective compared to homogeneous TEMPO reagents. It also has a superior performance compared to polymer-supported TEMPO and silica-supported TEMPO in terms of both selectivity and stability. With Silia <i>Cat</i> TEMPO, no activation is required prior to use and selective aldehyde vs acid oxidation is possible. <i>U.S.Patent: 6,797,773 B1,2004</i>	Oxidation of alcohols or Aldehydes	Orange	Yes	≥ 0.70 mmol/g	639 g/L	All solvents, aqueous and organic	Keep dry	Silia <i>Cat</i> TEMPO

Formats: 5g, 10g, 25g, 50g, 100g, 250g, 500g, 1kg, 5kg, 10kg, 25kg, ...

2

Catalyst Screening Service

Looking for the right SiliaCat Heterogeneous Catalyst to use? Contact us to take advantage of SiliCycle's expertise in catalysis. Our R&D team can find the optimal conditions for you.

Our Catalyst Screening Service is innovative because it provides a turn key solution to the pharmaceutical and manufacturing industries. Working with the substrates you identify, SiliCycle's chemists will quickly develop the most efficient catalysis process (which catalyst and solvent to use, optimal concentrations, etc).

We guarantee confidentiality, since in most cases our screening service requires us to work with APIs or other patented materials. This will ensure an easy technology transfer.

24

Make the call many major pharmaceutical companies have already made. Contact us to discuss how we can help you to reach your goals. Many screening services are available to fit your needs and budget.

SiliaCat - Regulatory Information

Silia*Cat* Heterogeneous Catalysts are being used more and more by GMP pharmaceutical, biotechnology, and fine chemical industries as well as contract research and manufacturing organizations. Many have run their own analysis proving Silia*Cat* can safely be used without compromising the purity of their compounds due to leaching.

Need specific regulatory files? SiliCycle can work with you to fulfill your requirements. We can provide custom regulatory documentations that include specific analytical tests in line with your needs.

SiliCycle is committed to high quality standards and strives to provide default-free products. In doing so, all products are manufactured in an ISO 9001:2008 compliant facility and submitted to a stringent quality control. Every lot must meet the quality specifications to be released for sale and a sample from every batch is kept for subsequent analysis. All products are shipped with the following information:

- Certificate of Analysis
- Purity (Leachables and extractables)
- Molecular loading
- Surface Coverage
- Volatile Content
- Material Safety Data Sheets (MSDS)
- BSE/TSE Declaration (no animal origin)
- Relevant Technical Information

Experimental Procedures and Optimization

Typical experimental procedures can be undertaken to optimize yields and increase found for each catalytic reaction. Please selectivity. Various parameters can be changed, one at a time or simultaneously, to note that these procedures are the starting suggestions meant to be starting points. improve results. Sometimes, optimization steps need to be

Number of mol % of SiliaCat Catalysts

For each new experiment, we suggest using a molar percent of SiliaCat with respect to the substrate. This quantity has to then be optimized in order to obtain a good catalytic activity with the lowest consumption of the SiliaCat. For initial experiments we suggest to use an higher mol % of SiliaCat Catalyst in respect to the substrate and then decrease the quantity if yield and kinetics are already in line with your needs. During development applications work at SiliCycle, we always start using 1 mol % of catalyst.

Solvent

Silia Cat can safely be used in a wide range of organic and aqueous solvents commonly used in laboratory and in process work, such as DMF, DMSO, THF, ACN, alcohols, ethers, chlorinated solvents, water, etc. The nature of the solvent does sometimes influence the catalytic efficiency, however. If yield is low or kinetics are too slow, changing solvent or adding a co-solvent should be considered.

Solution Concentration

At low substrate concentration, the activity of the catalyst will be directly proportional to the number of moles of substrate available. If you increase the concentration of the substrate, the activity will increase until the active sites become saturated. So the substrate concentration is a parameter that needs to be optimized to develop your catalytic conditions.

Temperature

A catalyst's purpose is to enhance the kinetics of a reaction, so we recommend running the experiments at room temperature. In the optimization step, the temperature could be adjusted, if it is needed.

Reaction Time

In the case that the TOF is low, and increasing the temperature to increase the kinetics is not possible, we recommend increasing the contact time with the catalyst to complete the reaction. Also, in this case, increasing of the amount of catalyst is an option.

Silia*Cat*'s Compatibility with New Technologies

SiliaCat In Flow Chemistry and Microwave Assisted Experiments

SiliaCat can also be used in flow chemistry and under microwave radiation. In flow chemistry, simply place the Silia*Cat* inside the solid-phase reactor included in the flow system (i.e. Syrris Asia® Solid Phase Chemistry Reactor) and run the reaction. See page 78 for more details.

In microwave experiments, Silia*Cat* showed excellent catalytic efficiency in a short period of time. See following pages for the different applications developed.

Catalysis Definitions and Calculation

Silia*Cat* Heterogeneous Catalysts are sol-gel silica-supported catalysts that can be used to replace homogeneous catalysts. The process for using Silia*Cat* is outlined in the scheme page 21.

26

What is a Turnover Number (TON)?

In catalysis, the term turnover number has two meanings: the number of moles of substrate that a mole of catalyst can convert before becoming inactivated and is the amount of substrate converted per the amount of catalyst used.

In theory, the Ideal catalyst would have an infinite turnover number and would never be consumed. In practice, turnover numbers begin at 100 and can go up to a million, more so in some cases.

What is a Turnover Frequency (TOF)?

A catalyst's turnover frequency number, or turnover number per time unit, characterizes its level of activity. So the TOF is the total number of moles transformed into the desired product by one mole

of active site per hour. The larger the TOF, the more active the catalyst.

TOF = TON/hour

How to Calculate the Amount of SiliaCat Needed Based on Mol %?

One mol % (1 mol %) means 0.01 molar equivalent. If 3 mmol of the substrate is used, then 0.03 mmol of SiliaCat catalyst is required. To determine the weight of the catalyst needed, simply divide this value by the loading of the catalyst. For example, Silia*Cat* DPP-Pd typical loading is 0.2 mmol/g, so 0.15 g is needed.

Solvent Molar Concentration

A 1.2 M solvent concentration means:

1.2 mmol of substrate per mL of solvent (or 1.2 mol of substrate per L of solvent) Volume of solvent needed = mmol of substrate used molar concentration desired

For example, if 3 mmol of the substrate is used, then, 2.5 mL of solvent is necessary to reach a 1.2 M concentration.

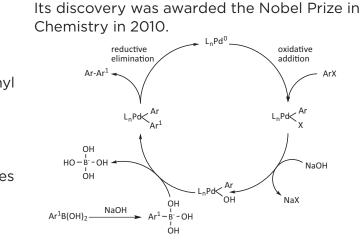
Suzuki Coupling Using Pd-based SiliaCat

The Suzuki coupling (also called Suzuki-Miyaura reaction) is the reaction between a boronic acid and a halide catalyzed by a palladium (0) catalyst widely used in organic synthesis. At first, only aryl and vinyl substrates could undergo Suzuki coupling. Now, catalysts are becoming so powerful that the substrate scope has broadened to include: alkyl-, alkenyl- & alkynyl- halides, triflates and organoboranes, trifluoroborates or borate esters.

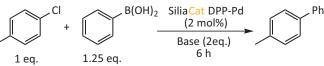
Solvent and Base Effects

The choice of solvent and base play an important part in the Suzuki reaction. Different solvents and bases were tested to find the most suitable combination. Total conversion was obtained in both ethanol and propanol. With THF, dioxane, toluene and DMF, the kinetics were lower.

Solvent and Base Effects									
	Temp.	Conversion / Selectivity (%)							
Solvent	(°C)	K ₂ CO ₃	Na ₂ CO ₃	KOAc	NaOAc	K ₂ HPO ₄	Et ₃ N		
MeOH	64	74 / 95	69 / 99	63 / 98	63 / 98	73 / 100	72 / 93		
EtOH	77	100 / 98	100 / 97	82 / 99	85 / 100	79 / 100	77 / 93		
EtOH/H ₂ O (15%)	77	100 / 100	82 / 100	78 / 100	88 / 100	86 / 98	89 / 95		
1-PrOH	90	100 / 95	70 / 97	90 / 99	91 / 99	15 / 100	20 / 95		
2-PrOH	77	100 / 100	43 / 93	90 / 99	72 / 100	50 / 100	20 / 100		
THF	64	30 / 93	15 / -	45 / 89	35 / 94	37 / 95	5/-		
MeTHF	77	40 / 95	33 / 100	39 / 100	56 / 100	30 / 97	4 / -		
Dioxane	90	50 / 90	30 / 93	56 / 93	35 / 94	20/90	No reaction		
Toluene	90	47 / 98	23 / 87	49 / 96	10 / 90	65 / 95	No reaction		
DMF	90	50 / 100	30 / 100	15 / 100	17 / 100	7 / 100	No reaction		


Catalyst Concentration Effect

Decreasing the mol % of the catalyst lowers the kinetics of the reaction, but the total conversion can still be achieved. In this example, the addition of water significantly improves catalyst activity. Even i the catalyst amount is divided by 10, the TOF is still increased by a factor of five.


(Cdns: SiliaCat DPP-Pd, PhB(OH), (1.1 eq.), K2CO3 (1.5 eq.) R

For the base, potassium carbonate (K_2CO_7) is the best. However, in some cases, Na₂CO₃ and NaOAc can also be used.

Catalyst Concentration Effect										
n	mol %	Solvent (M)	Time (h)	Conv. (%)	TON	TOF				
if	0.2	EtOH (0.05)	0.5	100	500	1,000				
l	0.1	EtOH (0.05)	1	100	1,000	1,000				
	0.01	EtOH/H ₂ O (0.08)	2	100	10,000	5,000				
?T).	0.002	EtOH/H ₂ O (0.08)	16	100	50,000	3,125				

Pd-Based Silia*Cat*'s Catalytic Performance Comparison and Reusability

All SiliaCat Pd-based catalysts can be used for Suzuki coupling. The table below presents the best conditions for bromo- substrates. It can be seen that even with half the catalyst amount, Silia*Cat* Pd^o is the more active catalyst.

For substrates with electron-withdrawing groups, Silia*Cat* catalysts can be reused more than 5 times with a minimal loss of activity and leaching. For substrates containing an electron-donating group, Silia*Cat* catalysts can be used up to 3 times with only a small effect on activity.

Substrate (R)		SiliaCat Performance Comparison [Conversion / Selectivity (%)]			Reusability [Conversion / Selectivity (%)] Pd & Si Leaching (ppm) ¹				
	Substrate (K)	DPP-Pd (1 mol %) ^{a-b}	S-Pd (1 mol %)°	Pd ^o (0.5 mol %) ^d	Run 2	Run 3	Run 4	Run 5	
awing	O ₂ N Br	100 / 100 Pd: 0.1, Si: 2	100 / 99	100 / 99	100 / 100 Pd: 0.05, Si: 1	100 / 100 Pd: 0.08, Si: 1.5	100 / 100 Pd: 0.1, Si: 3	99 / 98 Pd: 0.1, Si: 3.5	
Electron-Withdrawing	NC Br	100 / 97 Pd: 0.1, Si: 3	100 / 99	99 / 97	98 / 99 Pd: 0.1, Si: 8	98 / 99 Pd: 0.07, Si: 5	100 / 99 Pd: 0.1, Si: 6	99 / 98 Pd: 0.1, Si: 5	
Electro	o Br	100 / 97 Pd: 0.1, Si: 6	94 /88	95 / 98	99 / 90 Pd: 0.2, Si: 7	97 / 92 Pd: 0.2, Si: 8	99 / 98 Pd: 0.1, Si: 4	98 / 97 Pd: 0.1, Si: 5	
ting	Br	100 / 99 Pd: 0.9, Si: 5	82 / 100	83 / 100	100 / 100 Pd: 0.6, Si: 9	100 / 98 Pd: 0.4, Si: 7	60 / 97 Pd: 0.05, Si: 6	-	
Electron-Donating	F Br	100 / 80 Pd: 0.07, Si: 3	94 / 100	98 / 99	99 / 99 Pd: 0.04, Si: 1.5	98 / 98 Pd: 0.1, Si: 2	81 / 94 Pd: 0.06, Si: 2	73 / 95 Pd: 0.03, Si: 7	
Elect	N Br	100 / 99 Pd: 2.1, Si: 10	72 / 95	97 / 95	88 / 90 Pd: 0.3, Si: 7	75 / 95 Pd: 4, Si: 9	87 / 99 Pd: 0.6, Si: 10	68 / 96 Pd: 04, Si: 1	

^a Corresponds to "Run 1" in the reusability study.

General exp. cond.: 1 eq. substrate, 1.2 eq. PhB(OH), 2 eq. K₂CO₂; ^b MeOH (0.1 M), 2 h, 65°C; ^c EtOH/H₂O (0.12 M) 4h, 77°C; ^d EtOH (0.12 M) 2h, 77°C.

The performance of the SiliaCat DPP-Pd and S-Pd catalysts for Suzuki coupling was also compared in microwave assisted experiments for brominated substrates. Both products exhibit a very high performance in microwave experiments. After only

Catalytic Performance in Microwave										
Substrate (R)	Conversion (⁴ Silia <i>Cat</i> DPP-Pd (0.5 mol %) ^{a-b}	%) / Yield (%) Silia <i>Cat</i> S-Pd (0.5 mol %)⁰								
O ₂ N-Br	100 / 99.5	100 / 99.3								
NC - Br	100 / 99.4	100 / -								
o Br	100 / 88	100 / -								
F - Br	98 / 97.3	72 / -								

General exp. cond.: 1 eq. substrate, 1.1 eq. PhB(OH)₂, 1.5 eq. K₂CO₂; ^a MeOH (0.2 M), 5 min, 75°C, 150 W, 150 psi; ^b MeOH (0.2 M), 5 min, 75°C, 200 W, 200 psi, ° 15 min.

¹ Using Silia*Cat* DPP-Pd as catalyst under the same conditions previously described. Run #1 is the result presented in the performance comparison section of the table

5 minutes, 100% of the product is obtained in most experiments. Both also present high selectivity, with yields nearly reaching 100%. The products were also tested for chlorinated substrates as presented on the following page.

Pd-based SiliaCat's Catalytic Performance Comparison (con't)

The SiliaCat Pd-based catalysts can also be used for Suzuki coupling with chlorinated substrates in both conventional and microwave conditions. We have chosen to do this study with SiliaCat DPP-Pd.

Catalytic Perform	Catalytic Performance of Chlorinated Substrate									
Substrate (R)	Conversion / Yield (%) ^a	Subs								
0 CI	98 / 93	Í								
MeO	98 / 96	ci 🦯								

^aExp. cond. in bulk: 1.5 mol % of SiliaCat, 1 eq. substrate, 1.5 eq. PhB(OH), 2 eq. K_aCO_a, EtOH/H,O 15% (0.12M), 6 h, reflux. ^b Microwave: 1 mol % of Silia*Cat*, 15 min, 125°C.

Conclusion for Suzuki Coupling

In conclusion, SiliaCat, can be used successfuly for Suzuki coupling reactions with iodide, bromide and chloride aryl substrates in conventional or in microwaves conditions. The SiliaCat DPP-Pd gives better performance versus the SiliaCat S-Pd and nearly equivalent to the SiliaCat Pd^o for the substrates presented.

Suzuki Coupling Typical Experimental Condition

Conventional Experimental Conditions

Reaction

All products except the catalyst are added to a round bottom flask equipped with a condenser and a magnetic stirrer. Bring mixture to reflux and, after 10 minutes (when the solution is homogeneous), add the required quantity of catalyst.

Work-up

Once the reaction is complete (determined by TLC or GC-MS), the catalyst is filtered at room temperature, rinsed twice with water and three times with the solvent used in the reaction, and finally dried and stored for future use. The reaction mixture obtained after filtration of the catalyst is evaporated, and the product is extracted using ethyl acetate (AcOEt) or diethyl ether (Et_oO) and washed twice with water. The organic phase is dried using magnesium sulfate (MgSO₂), and filtered, and the solvent is evaporated. The crude mixture is purified using flash chromatography, if needed. Also applicable to microwave conditions.

Suzuki Coupling Typical Experimental Conditions												
Products	Co	onventional Condition	ons	Ν	licrowave Condition	S						
	Ar-Iodide	Ar-Bromide	Ar-Chloride	Ar-lodide	Ar-Bromide	Ar-Chloride						
Base [K ₂ CO ₃]	1.5 eq.	1.5 eq.	2.0 eq.	1.5 eq.	1.5 eq.	2.0 eq.						
Boronic Acid	1.2 eq.	1.2 eq.	1.5 eq.	1.2 eq.	1.2 eq.	1.5 eq.						
Silia <i>Cat</i> Catalyst	≥ 0.5 mol %	≥ 0.5 mol %	≥ 1.0 mol %	≥ 0.5 mol %	≥ 0.5 mol %	≥ 1.0 mol %						
Best Solvents (HPLC Grade)	MeOH (0.05 - 0.1 M)	EtOH/H ₂ O (10:1, 0.12 M)	EtOH or TBA/H ₂ O (10:1.5, 0.12 M)	MeOH (0.2 M)	MeOH (0.2 M)	EtOH/H ₂ O (10:1, 0.2 M)						

*Note: molar concentration is related to the substrate.

es	
strate (R)	Conversion /Yield (%) ^a
CI	99 / -
OMe NO ₂	Bulk: 100 / 98 MW ^b : 100 / 95

Μ	icrowave Conditions
R	eaction
	products are added to a microwave tube equipped wit netic stirrer. Set microwave conditions to:
•	Power: 150 W
•	Pressure: 150 psi
	Temperature: 75 - 150°C

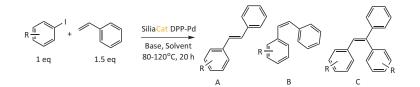
Reaction Time: 5 - 15 min


Heck Coupling Using SiliaCat DPP-Pd & S-Pd

The Heck reaction, also known as the Mizoroki-Heck reaction, is the coupling of a halide with an alkene in the presence of a base and a palladium catalyst. This coupling allows a substitution reaction on alkenes and is of great importance in pharmaceutical research. We determined that the best catalyst for this reaction is Silia*Cat* DPP-Pd. It showed good reactivity for aryl iodides, bromides and chlorides.

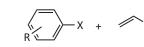
Note: SiliaCat Pd^o results were not available at the time of printing. Contact us for details.

Base and Solvent Effects


The Heck coupling between iodobenzene and styrene was used to evaluate the influence of solvent and base. The best combinations are KOAc/DMF, $Et_3N/MeCN$ and $Pr_3N/neat$. Using these systems, high yields and great selectivity in favor of product A were obtained.

Base	Base and Solvent Effects (Silia <i>Cat</i> DPP-Pd)											
Silia <i>Cat</i> (mol %)	Base	Solvent (0.4 M)	Time (h)	Conversion A / B / C (%)								
0.5	KOAc	DMF	24	100 (90 / 9.5 / 0.5)								
0.5	Na ₂ CO ₃	DMF	24	67 (62 / 47 / 0)								
0.1	Et₃N	MeCN	24	93 (77 / 6 / 11)								
0.1	Et ₃ N	H ₂ O	24	75 (70 / 5 / 0)								
0.1	Pr₃N	(neat)	20	100 (95 / 5 / 0)								

Catalytic Performance and Comparison vs Homogeneous Catalyst


Silia*Cat* DPP-Pd is a very efficient catalyst for the Heck coupling and allows greater selectivity over homogeneous Pd catalyst (*TPP is required*). In addition to higher yield of the desired product, the catalyst left minimal residual Pd, TPP or TPPO in solution that would have otherwise required the use of a metal scavenger, chromatography or trituration to remove.

Catalytic Performance and Comparaison vs Homogeneous											
Subs R	trate X	Silia <mark>Cat</mark> DPP-Pd (mol %)	Base	Solvent (0.4 M)	Conversion A / B / C (%)	Phosphine Leaching (ppm)					
4-CN	Br	0.25	NaOAc	DMF	100 (95 / 5 / -)	-					
4-NO ₂	Br	0.25	NaOAc	DMF	99 (97 / 2 / -)	-					
2-CH ₃	Br	0.25	Et ₃ N	MeCN	71 (67 / 5 / -)	-					
4-OMe	I	0.25	Et ₃ N	MeCN	75 (60 / 15 / -)	-					
Н	I	0.1	Et ₃ N	MeCN	100 (98 / 2 / -)	0					
Н	I	1.0 Pd(OAc) ₂ PPh ₃	Et₃N	MeCN	100 (70 / 22 / 8)	6,030					

Substrate Scope, Leaching and Microwave Compatibility

Silia*Cat* catalysts are efficient in the Heck coupling with different substrates. In all cases, conversion and selectivities were excellent. Leaching results were all

X = I, Br, Cl

Sul	Substrate Scope, Leaching and Microwave (MW) Compatibility											
				. s	ilia <i>Cat</i> DPP-Pd				Silia	a <i>Cat</i> S-Pd		
Rn	Rn Mode	mol %	Time	Temp.	Conv./Sel.(%)	Leaching (ppm)	mol %	Time	Temp.	Conv./Sel.(%)	Leaching (ppm)	
1	Batch	0.5	24 h	120°C	100 / 97	-	0.5	24 h	120°C	98 / 92	-	
	MW	0.2	10 m	125°C	93 / 85	P: 0.3, Pd: 0.02, Si: 0.8	0.2	15 m	125°C	97 / 93	Pd: 3.8, Si: 1.9	
	Batch	0.2	24 h	135°C	100 / 98	-	0.25	24 h	120°C	85 / 75	-	
2	MW	0.2 0.5 ¹	10 m 30 m ¹	125°C 150°C¹	92 / 81 99 / 931	- P: 0.7, Pd: 0.02, Si: 1.6	0.2	15 m	125°C	87 / 76	Pd: 0.3, Si: 0.8	

¹ Et₃N in water

Heck Coupling Typical Experimental Procedure

Conventional Experimental Conditions

Reaction

All products except the catalyst are added to a round bottom flask equipped with a condenser and a magnetic stirrer. Bring mixture to reflux (MeCN) or to 120°C (DMF or NMP) and after 10 minutes (*when solution is homogeneous*) add the desired quantity of catalyst.

Work-up

Once the reaction is complete (*determined by TLC or GC-MS*), follow the same work-up procedure as for Suzuki coupling conventional experimental conditions as they are applicable to microwave conditions.

Heck Coupling Typical Experimental Conditions											
Products	Convent	ional Conditions fo	r 1 eq of:	Microw	vave Conditions for	l eq of:					
	Ar-Iodide	Ar-Bromide	Ar-Chloride	Ar-Iodide	Ar-Bromide	Ar-Chloride					
Base	1.5 eq. [Et ₃ N or NaOAc]	1.5 eq. [NaOAc]	1.5/0.5 eq. [Ca(OH) ₂ /TBAB]	1.5 eq. [Et ₃ N or NaOAc]	1.5 eq. [K ₂ CO ₃]	2.0 eq. [K ₂ CO ₃]					
Olefin	1.2 eq.	1.2 - 2.0 eq.	1.2 - 2.0 eq.	1.2 - 2.0 eq.	1.2 - 2.0 eq.	1.2 - 2.0 eq.					
Silia <i>Cat</i> Catalyst	≥ 0.5 mol %	≥ 0.5 mol %	≥ 1.0 mol %	≥ 0.2 mol %	≥ 0.2 mol %	≥ 1.0 mol %					
Best Solvents (HPLC Grade)	MeCN (1.2 M) DMF (0.75 M)	DMF (0.75 - 1.5 M)	NMP/H ₂ O (1:1, 1.67 M)	MeOH (0.2 M)	MeOH (0.2 M)	EtOH/H ₂ O (10:1, 0.2 M)					

*Note: molar concentration is related to the substrate.

alkene

Microwave	Conditions

Reaction

All products are added to a microwave tube equipped with a magnetic stirrer. Set microwave conditions to:

- Power: 100 W (I-) or 200 W (Br-, CI-)
- Pressure: 150 psi (I-) or 200 psi (Br-, Cl-)
- Temperature: 100°C (I-) or 125°C (Br-, CI-)
- Reaction Time: 10 min (I-) or 15 min (Br-, Cl-)

Sonogashira Coupling Using SiliaCat Catalysts

The Sonogashira coupling reaction of aryl halides and terminal acetylenes is an effective method for the formation of substituted acetylenes. This reaction is frequently utilized as a key step in natural product chemistry and for the synthesis of acetylene compounds, which have several applications.

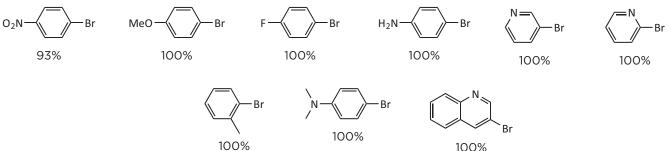
Catalyst Concentration and Solvent Effects

Sonogashira coupling between iodonitrobenzene and phenylacetylene was achieved easily and without the need for co-catalysts to activate the alkyne, making the use of SiliaCat an efficient method for the formation of substituted acetylenes. All catalysts screened presented excellent efficiency, even in low amounts.

Ca	Catalyst Concentration and Solvent Effects													
	Silia <i>Ca</i>	t DPP-F	Pd			Silia	Cat S-Po	S-Pd Silia <i>Cat</i> Pd ^o						
mol %	Solvent (M)	Time (min)	Conv. (%)	TON (TOF)	mol %	Solvent (M)	Time (min)	Conv. (%)	TON (TOF)	mol %	Solvent (M)	Time (min)	Conv. (%)	TON (TOF)
0.5	EtOH/H ₂ O (0.07)	30	100	200 (400)	0.5	EtOH/H ₂ O (0.07)	5	100	200 (2,500)	0.1	EtOH (0.1)	2 h	100	1,000 (500)
0.5	MeOH/H ₂ O (0.07)	5	100	200 (2500)	0.5	MeOH/H ₂ O (0.07)	1h	100	200 (200)	0.1	EtOH (0.05)	30	100	1,000 (2,000)
0.1	EtOH/H ₂ O (0.07)	1 h	100	1,000 (1,000)	0.1	EtOH/H ₂ O (0.07)	1h	100	1,000 (1,000)					
0.1	MeOH/H ₂ O (0.07)	15	100	1,000 (4,000)										
0.01	EtOH/H ₂ O (0.13)	3 h	100	10,000 (4,000)										
0.002	EtOH/H ₂ O (0.13)	8 h	100	50,000										

Iodo-Substrate Scope and Microwave Compatibility

Sonogashira couplings between iodoaryls and phenylacetylene are achieved with ease and without the need for co-catalysts to activate the alkyne. This shows that SiliaCat is an efficient tool for the formation of substituted acetylenes.


SiliaCat

$$R$$
 = $K_2CO_3 (2 \text{ eq.})$ R = $K_2CO_3 (2 \text{ eq.})$

Bromo-Substrate Scope and Microwave Compatibility

Silia*Cat* DPP-Pd and Pd^o are also efficient catalysts Conversions obtained with 1 mol % of SiliaCat DPPfor use with bromo substrates. A few examples of the Pd under microwave irradiation are presented below. Sonogashira coupling between various bromoaryls Conventional methodology is also possible, but kinetics are significantly lower (a few hours compared substrates (1 eq.) and phenylacetylene (1.25 eq.) using K_2CO_3 (2 eq.) in MeOH (0.2 M) are shown below. to 15 minutes).

Bromo- Substrate Scope Conversion (%) Results using SiliaCat DPP-Pd

Sonogashira Coupling Typical Experimental Procedure

Conventional Experimental Conditions

Reaction

All products except the catalyst are added to a round bottom flask equipped with a condenser and a magnetic stirrer. Bring mixture to reflux, and after 10 minutes (when the solution is homogeneous) add the required quantity of catalyst.

Work-up

Once the reaction is complete (determined by TLC or GC-MS), follow the same work-up procedure as for Suzuki coupling conventional experimental conditions as they are applicable to microwave conditions.

Sonogashira Coupling Typical Experimental Conditions									
Products	Standard Condi	tions for 1 eq of:	Microwave Conc	litions for 1 eq of:					
	Ar-lodide	Ar-Bromide	Ar-Iodide	Ar-Bromide					
Base [K ₂ CO ₃]	1.5 eq.	1.5 eq.	1.5 eq.	2.0 eq.					
Alkyne	1.1 eq.	1.2 5 eq.	1.10 eq.	1.5 eq.					
Silia <i>Cat</i> Catalyst	≥ 0.5 mol %	≥ 1.0 mol %	≥ 0.5 mol %	≥ 1.0 mol %					
Best Solvents (HPLC Grade)	For room temperature rea For reflux reaction: MeOH or EtOH/H ₂ O (10:1, 0.1 M)	ction: MeOH (0.02 M) (0.05 - 0.13 M, typ.: 0.07 M)	MeOH (0.2M)	MeOH/H ₂ O (10:1, 0.2 M)					

*Note: molar concentration is related to the substrate.

SILICYCLE.

32

Reaction

All products are added to a microwave tube equipped with a magnetic stirrer. Set microwave conditions to:

- Power: 150 W (I-) or 200 W (Br-)
- Pressure: 150 psi (I-) or 200 psi (Br-)
- Temperature: 100°C (I-) or 100 150°C (Br-)
- Reaction Time: 5 15 min (I-) or 5 20 min (Br-)

Stille Coupling Using SiliaCat Pd Catalysts

The Stille coupling is a versatile reaction for C-C bond formation. It is a coupling between a halide and an organotin compound. This reaction is widely used in synthesis, but a major drawback is the toxicity of the tin compounds involved. In Stille couplings, a Pd^o or Pd^{II} catalyst is required, and it must be compatible with a wide variety of functional groups (*very few limitation on the R-group*). SiliCycle has developed catalysts that are highly efficient for Stille couplings, as shown below.

Note: Silia*Cat* Pd^o results were not available at the time of printing.

Catalyst Concentration and Solvent Effects

Increasing the amount of the catalyst, for the same solvent and at a constant substrate concentration, improves kinetics (*see table below*). With a mol % of 0.25, the reaction was not completed in 22 h. With a mol % of 2.0, the reaction was completed in 17 h.

As a general rule, if the solvent and the concentration of the substrate are kept constant, increasing the amount of the catalyst, thus increasing the member of the active sites, will speed up the kinetics of the reaction.

This table also shows the importance of the solvent. At low catalyst concentration, 0.25 mol % in dioxane, the reaction was not completed in 22 h. However, under the same conditions but with toluene as the solvent, the reaction was completed in 16 h. In dioxane, the same activity is observed for a concentration of 2.0 mol %. The solvent is responsible for diffusion of the substrate to the active sites, so the better the diffusion, the higher the kinetics will be.

In all experiments, determining the optimal quantity of Silia*Cat* in respect to the solvent should be done.

Catalyst Concentration and Solvent Effects					
Silia <mark>Cat</mark> DPP-Pd (mol %)	Solvent (M)	Time (h)	Conversion (%)		
2.0	Dioxane (0.1 M)	17	99		
0.5	Dioxane (0.1 M)	20	100		
0.25	Dioxane (0.1 M)	22	74		
0.25	Toluene (0.1 M)	16	99		

Catalytic Activity and Additive CsF Influence

Reactions were performed at reflux until the GC/MS conditions are not required.

Catalytic Activity and Additive CsF Influence						
Substrate (R)	Halide (X)	Silia <i>Cat</i> DPP-Pd (mol %)	Additive (eq.)	Solvent (M)	Time (h)	Conversion (%)
4-CN	Br	2	-	Dioxane (0.1 M)	18	87
4-F	Br	10	-	Dioxane (0.1 M)	24	99
4-F	Br	10	CsF (2)	Toluene (0.1 M)	24	100
Н	Br	10	-	Toluene (0.1 M)	24	100
4-CH ₃	Br	10	CsF (2)	Dioxane (0.1 M)	24	100
4-OCH ₃	Br	10	CsF (2)	Dioxane (0.1 M)	24	100
Н	I	10	CsF (2)	Toluene (0.1 M)	24	100
4-NO ₂	I	2	-	Dioxane (0.1 M)	18	88

Note: R'SnBu₃ was vinyl (1.1 eq.)

Silia*Cat* DPP-Pd vs Competitive Catalysts

Comparative analysis with other Pd catalysts availab on the market demonstrates the Silia*Cat* DPP-Pd to be comparable or better in standard Stille conditions Table at right shows conversion %.

SiliaCat DPP-Pd Reusability and Leaching

The minimal leaching and the robustness of the organoceramic matrix are important factors that allow Silia*Cat* DPP-Pd to be reused several times.

SiliaCat DPP-Pd Reusability and Leaching						
Reusability	Conversion (%)	Pd Leaching (ppm)				
lst	100	3.0				
2 nd	100	1.7				
3 rd	100	2.3				
4 th	100	2.3				

Stille Coupling Typical Experimental Procedure

Conventional Experimental Conditions

Reaction

All products except the catalyst are added to a round bottom flask equipped with a condenser and a magnetic stirrer. Bring mixture to reflux, and after 10 minutes (*when the solution is homogeneous*) add the required quantity of catalyst.

Work-up

Once the reaction is complete (*determined by TLC or GC-MS*), follow the same work-up procedure as for Suzuki coupling standard conditions.

Reactions were performed at reflux until the GC/MS analysis showed maximum conversion. Anhydrous

ole	Silia <i>Cat</i> DPP-Pd vs Competitive Catalysts							
IS.	Silia <i>Cat</i> DPP-Pd	Escat 1351	Encat 30	Royer Catalyst	Pd(PPh ₃) ₄	Pd(OAc) ₂		
	99	44	95	90	72	20		

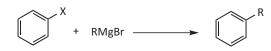
Experiment	al Conditions - Stille Coupling
Products	Standard Conditions for 1 eq of:
Products	Ar-Iodide & Ar-Bromide
Base [K ₂ CO ₃]	1.0- 2.0 eq. (usually 1.1 eq.)
Additive (CsF)	If needed, add 2.0 eq. for higher conversion
Silia <i>Cat</i> Catalyst	0.25 - 10.0 mol % (typ.: 2 mol % for -I and 2 - 10 mol % for -Br
Best Solvents (HPLC Grade)	Dioxane (0.1 M) or Toluene (0.1 M)

*Note: molar concentration is related to the substrate.

2 eq.

SiliaCat DPP-Po

(mol %)


1.0

0.5

0.2

Kumada Coupling Using SiliaCat Pd Catalysts

The Kumada coupling is the direct cross-coupling between an alkyl or an aryl Grignard and a halocarbon. It can be catalyzed by a Pd or a Ni catalyst.

Note: SiliaCat Pd^o results were not available at the time of printing.

Catalyst Concentration Effect

At a constant concentration of substrate, an increase of the amount of Silia*Cat* from 0.1 (or 0.2) to 1.0 will increase the kinetics (*completed in only 15 minutes*).

By increasing the concentration of the catalyst, thus thereby increasing the number of active sites, conversion of the substrate will be favored.

1 ea

Catalyst Concentration Effect

Solvent

(M)

THF (0.08 M)

THF (0.08 M)

THF (0.08 M)

THF, RT

Time

(min)

15

90

4 h

Conversion

(%)

98

96

98

Catalyst Concentration Effect						
SiliaCat DPP-Pd (mol %)	Solvent (M)	Time (min)	Conversion (%)			
1.0	THF (0.07 M)	15	96			
0.5 THF (0.07 M		15	95			
0.2	THF (0.08 M)	2 h	94			

Catalyst Reusability and Leaching

Minimal leaching and the robustness of the organoceramic matrix are important factors that allow it to be reused several times.

Silia <i>Cat</i> R	SiliaCat Reusability and Leaching				
Reusability	Conversion	Leachin	g (ppm)		
Redubulity	(%)	Pd	Si		
1 st	98	0.20	1.5		
2 nd	95	0.20	2.3		
3 rd	94	0.50	1.7		
4 th	77	0.02	1.9		

Catalytic Activity and Leaching

Silia*Cat* DPP-Pd showed good reactivity for aryl iodides and bromides. Inert conditions are required for Kumada couplings due to the presence of Grignard reagent.

Catalytic Activity and Leaching						
Substrate (R) /	R-MgBr	Solvent	Time	Conversion	Leachin	g (ppm)
Halide (X)	(2 eq.)	(M)	(h)	(%)	Pd	Si
4-OCH ₃ / Br	Ph-MgBr	THF (0.05 M)	18	98	0.3	0.2
4-OCH ₃ / Br	i-Bu-MgBr	THF (0.05 M)	18	95	-	-
4-CH ₃ / Br	Ph-MgBr	THF (0.05 M)	18	96	-	-
4-CH ₃ / Br	i-Bu-MgBr	THF (0.05 M)	18	98	-	-
4-F / Br	Ph-MgBr	THF (0.08 M)	24	94	< 0.01	1.5
H/I	Ph-MgBr	THF (0.08 M)	24	99	-	-
4-0CH ₃ / I	Ph-MgBr	THF (0.08 M)	24	94	-	-
4-CH ₃ / I	Ph-MgBr	THF (0.08 M)	24	95	< 0.01	1.0

Kumada Coupling Typical Experimental Procedure

Conventional Experimental Conditions

Reaction

All products under inert conditions (*catalyst, solvent, substrates, and Grignard reagent*) are added to a Schlenk or a dry round bottom flask equipped with a magnetic stirrer. The mixture was stirred at room temperature until the TLC or GC-MS analysis confirmed reaction completion (18-24h).

Work-up

Once the reaction is completed, inert conditions are not necessary. Follow same work-up procedure as for Suzuki coupling conventional experimental conditions.

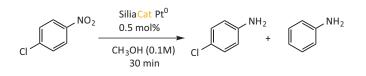
		١
		7

Experimental Conditions - Kumada Coupling					
Products	Standard Conditions for 1 eq of:				
Froducts	Ar-Iodide & Ar-Bromide				
R-MgBr	2.0 eq.				
Silia <i>Cat</i> Catalyst	2.0 - 10.0 mol % (usually 5 mol %)				
Best Solvents (HPLC Grade)	Tetrahydrofuran (0.05 - 0.08 M) (usually 0.08 M)				

*Note: molar concentration is related to the substrate. Reaction need to be done at room temperature under inert atmosphere.

Selective Hydrogenation of Nitroarenes Using SiliaCat Pt^o

Functionalized anilines are important intermediates in various industries such as pharmaceuticals, polymers, and dyes. Simple aromatic amines are generally obtained by catalytic hydrogenation of nitroarene compounds with various heterogeneous commercial catalysts (*supported nickel, copper, cobalt*) including Pt/C. Yet, the selective reduction of a nitro group with H₂ when other reducible groups are present in the same molecule is generally not feasible with these catalytic materials and requires the use of advanced heterogeneous catalysts. Silia*Cat* Pt^o exhibits chemoselective catalytic activity for the hydrogenation reaction of a series of substituted nitro compounds under remarkably mild conditions, namely at room temperature with 1 bar H_2 in a simple hydrogen balloon, using a modest 0.5 mol % catalyst amount.


Solvent and Catalyst Concentration Effects

The best results were obtained using methanol as solvent at 0.1 M concentration with respect to substrate. Even if the use of EtOAc results in high selectivities, the reaction times are generally much longer. Complete conversion is obtained after 1 hour in hexane using 0.5 or 0.1 mol % catalyst, but the selectivity to 4-chloroaniline was generally low.

Solvent and Catalyst Concentration Effects						
SiliaCat Pt ^o (mol %)	Time (h)	Solvent (M)	Yield (%) Product Aniline			
1.0	0.5	MeOH (0.1 M)	92	8		
0.5	0.5	MeOH (0.1 M)	87	13		
0.2	1	MeOH (0.1 M)	84	13		
0.1	2	MeOH (0.1 M)	90	10		
0.5	4	EtOAc (0.1 M)	55	0.5		
1.0	4	EtOAc (0.1 M)	75	1		
1.0	1	THF (0.1 M)	45	17		

SiliaCat Pt^o Reusability and Leaching

The reusability test of Silia*Cat* Pt^o was studied using 4-chloronitrobenzene as substrate under the optimal reaction conditions identified above. Reusing the catalyst in 7 consecutive cycles did not result in any loss of catalytic activity and leaching of Pt and Si (*assessed by ICP-MS*) was minimal. Complete substrate conversion was obtained even after the seventh cycle, with 99% selectivity. The selectivity of the reaction even improves with each subsequent cycle going from 84% in the first run up to 99% in run 7. The positive-feedback phenomenon of effective selectivity in consecutive reaction cycles is probably attributed to the silica matrix alkylation.

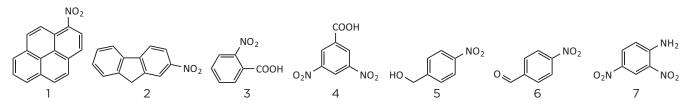
SiliaCa	Silia <i>Cat</i> Pt ^o Reusability and Leaching						
Reusability	Yield (%)		Leaching (ppm)				
Reusability	Product	Aniline	Pt	Si			
1	84	12	0.20	1.20			
2	89	11	0.04	0.40			
3	90	10	0.02	0.08			
4	92	8	0.17	0.10			
5	98	2	0.01	0.10			
6	99	1	0.01	0.12			
7	99	1	0.01	0.08			

SiliaCat Ptº vs Competitive Catalysts

Other commercially available Pt heterogeneous catalysts [Pt/C, Pt/SiO₂ and Reaxa Pt(0)EnCat40] were tested in the selective reduction of 4-chloronitrobenzene. In comparison to other Pt(0) heterogeneous catalysts, the Silia*Cat* Pt^o

SiliaCa	Silia <i>Cat</i> Pt ^o vs Competitive Catalysts											
Catalyst		Pt/C			Pt/SiO ₂		Reaxa Pt(0)EnCat40 w		t40 wet	Reaxa Pt(0)EnCat40 dry		t40 dry
Mol %	5	1	0.5	5	1	0.5	5	1	0.5	5	1	0.5
Time (h)	1	1	1	1	2	2	1	2	2	0.5	2	2
Product (%)	82	65	43	84	88	48	75	78	72	87	90	86
								1	1			1

Exp. conditions: 2 mol substrate in 20 mL MeOH under hydrogen balloon at room temperature.


Substrate Scope and Selectivity

The Hydrogenation of different nitro compounds, including those nitro compounds containing different functionalities, was attempted to demonstrate the selectivity of Silia*Cat* Pt^o catalyst in a wide range of reactions. The material was tested under hydrogen balloon, at room temperature conditions in methanol solvent with 0.5 – 1 mol % Pt catalyst. Note: look at our publication in *Adv. Synth. Catal.*, **2011**, *353*, 1306-1316 for more examples.

Substrate	Silia <i>Cat</i> Pt ^o (mol %)	Solvent (M)	Time (h)	Conversion (%)	Selectivity (%)
Structure #1	0.5	MeOH (0.05 M)	1	100	98 (5% pyrene)
Structure #2	0.5	MeOH (0.05 M)	1	98	100
Structure #3	0.5	MeOH (0.1 M)	1	100	100
Structure #4	0.5 / 1.0	MeOH (0.1 M)	2	100 / 100 ¹	98 / 100 ¹
Structure #5	0.5	MeOH (0.1 M)	1	100	100
Structure #6	0.5	MeOH (0.1 M)	1	100	95
Structure #7	0.5	MeOH (0.07 M)	2	100	100

¹ If 0.5 mol % was used only one NH₂ group was reduced. If 1 mol % was used, both nitro groups were reduced.

Substrate Structures

39

catalyst proved to be much more reactive, with complete conversion after 0.5 h with just 0.5 mol %. Furthermore, selectivity was significantly higher with only 4% aniline formed as by-product. No secondary product was observed in solution.

Conclusion of Selective Hydrogenation of Nitroarenes

The hydrogenation of different nitro compounds and the selective hydrogenation of different nitro compounds in the presence of different functionalities, including reducible carbonyl, amide, ester, amine and halide groups was achieved with Silia*Cat* Pt^o catalyst in methanol at room temperature and under 1 bar H₂ pressure. Given the broad applicability of Pt-based catalysts to widely different chemical reactions, it is envisaged that these catalysts, now commercially available, will be used in numerous fields of chemical synthesis as well as in energy generation applications.

Selective Hydrogenation of Nitroarenes Typical Experimental Procedure

Conventional Experimental Conditions

Reaction

Typical reactions are performed on a 2 mmol scale. The substrate is dissolved in 20 mL of MeOH and then treated with 0.1 - 1 mol % of Silia*Cat* Pt^o catalyst. The mixture is degassed twice, replacing the vacuum by hydrogen each time. The reaction mixture, connected to a balloon of hydrogen, is stirred at room temperature until it shows maximum conversion.

Work-up

Once the reaction is complete (*determined by TLC or GC-MS*), the catalyst is filtered off and washed with EtOH or MeOH. The filtrate is concentrated to give a crude product, and the conversion to the desired product is determined by GC/MS analysis.

Reusability

To reuse the catalyst, after completion of the reaction remove the catalyst by filtration, rinse with MeOH/THF solvents and dry under vacuum.

Selective Debenzylation Using SiliaCat Pd^o

The selective debenzylation of aryl benzyl ethers, benzyl esters, and benzyl amines, while leaving other sensitive groups intact, can be carried out in high yield under remarkably mild conditions (*namely at room temperature under 1 bar* H_2 *in a simple hydrogen balloon, using a modest 0.5 mol % catalyst amount*) using SiliaCat Pd⁰ (*note that SiliaCat* Pt⁰ can also be used but reaction times are longer and concentrations *are higher*).

Selective and smooth deprotection is critical. The commonly used method makes use of catalytic hydrogenolysis to protect benzylic groups with H_2 under pressure and in the presence of a heterogeneous catalyst such as Pd/C or Raney Ni. Often, however, the deprotection reaction conditions are not compatible with other functional groups, such as nitro, unsaturated bonds, and halogen groups.

Silia*Cat* hydrogenation catalysts offer a number of additional advantages over traditional Pd/C. They are non pyrophoric, and have a higher density and lower catalytic consumption (*<1 mol* % vs 5 - 10% for Pd/C) due to fast kinetics and high turnover.

Solvent Effect

Solvent choice is critical for any debenzylation reaction. Therefore, in order to optimize the reaction conditions, 1-(benzyloxy)-4-methoxybenzene was used as our substrate of choice. A series of common employed solvents (*THF, methanol, ethanol, ethyl acetate, and hexane*) were screened under a hydroge balloon at room temperature and at different solven concentrations. The best results were achieved with methanol and ethanol (*HPLC grade*).

Catalyst Concentration Effect

The molar concentration of the solvent with respect to the substrate is crucial with higher concentrations slowing or even preventing reaction. The best results were achieved by using a methanol concentration of 0.07 M and 0.5 - 1 mol % Silia*Cat* Pd^o, with complete conversion obtained after 1 - 2 hours.

SiliaCat Pd^o Reusability and Leaching

Catalyst stability and reusability are crucial features of any catalyst seeking commercial applications. The Silia*Cat* Pd^o was thus reused six consecutive times in the O-debenzylation reaction of 1-(benzyloxy)-4methoxybenzene under the standard mild condition developed in our laboratory (*reaction shown on previous page using 1 mol % of catalyst*).

After six runs, the catalyst exhibits only a slight loss in activity compared with that of a catalyst run three times. However, the activity remained approximately constant, and it was enough to expan the reaction time to 1 h and 30 min to gain complete debenzylation of the substrate.

Note: refer you to our publication called "Selective Debenzylation of Benzyl Protected Groups with Silia*Cat* Pd^o under Mild Conditions" in *ChemCatChem*, **2011**, *3*, 1–5.

	Solvent Ef	fect		
n 1lv	Silia <i>Cat</i> Pdº (mol %)	Time (h)	Solvent (M)	Conversion (%)
пy	2	16	EtOH (0.1 M)	17
len	2	16	MeOH (0.1 M)	15
nt	2	4	EtOH (0.07 M)	100
1	2	0.5	MeOH (0.07 M)	100
	2	20	THF (0.07 M)	10
	2	20	THF (0.07 M)	15
	2	20	EtOAc (0.07 M)	20
	2	20	Hexane (0.07 M)	21

Catalyst Concentration Effect								
Silia <i>Cat</i> Pd ^o (mol %)	Time (h)	Solvent (M)	Conversion (%)					
2	0.5	MeOH (0.07 M)	100					
1	1	MeOH (0.07 M)	100					
0.5	2	MeOH (0.07 M)	100					

Deveelailite	Time Conv		Leaching (ppm)		
Reusability	(h)	(%)	Pd	Si	
1 st	1	100	0.7	2.5	
2 nd	1	100	0.3	1.3	
3 rd	1	95	-	-	
314	1.5	100	0.3	2.3	
4 th	1	95	-	-	
4"	1.5	100	0.2	1.4	
5 th	1	94	-	-	
5"	1.5	99	0.2	0.8	
Cth	1	94	-	-	
6 th	1.5	100	0.1	0.5	

SiliaCat Pd^o vs a Competitive Catalyst

Using the same reaction as that used to demonstrate the reusability of Silia*Cat* Pd^o in the O-debenzylation reaction of 1-(benzyloxy)-4-methoxybenzene, we also tested the commercial catalyst PdO EnCat, a polyurea-entrapped catalyst.

Silia <i>Cat</i> Pd ^o vs a Competitive Catalyst								
Catalyst (mol %)	Time (h)	Conversion (%)	Selectivity (%)					
Silia <i>Cat</i> Pd ^o (0.5)	1/2	95 / 100	- / 100					
Silia <i>Cat</i> Pdº (1.0)	0.5/1	75 / 100	- / 100					
Pd0 EnCat (10)	16	100	100					

Substrate Scope and Selectivity

SiliaCat Pd^o is an efficient catalyst for the selective debenzylation of different aryl benzyl ethers, benzyl amino-acids, and benzylprotected sugars leaving other sensitive groups intact. Refer to our publication in ChemCatChem, 2011, 3, 1-5 for more examples.

Substrate Scope & Selecti	Substrate Scope & Selectivity								
Substrate	Silia <i>Cat</i> Pd ^o	Time	Conversion	Leaching (ppm)					
	(mol %)	(h)	[Yield] (%)	Pd	Si				
,°-<>-<>	1	1	100 [99.7]	3.4	1.3				
O HO NH BOC	1	1	100 [98.6]	1.7	5.0				
	1	20	100 [98.0]	0.4	7.0				

Conclusion of Selective Debenzylation

In conclusion, the Silia Cat Pd^o catalyst is suitable for the selective debenzylation of numerous substrates under mild conditions with a modest 1 - 2 mol % catalyst amount. Benzyl-protected sugars, amino acids, ethers, and esters are smoothly debenzylated under 0.1 MPa H, at room temperature.

Work-up

analysis and by ¹H NMR.

Once the reaction is complete as deemed by TLC or GC-MS,

the catalyst was filtered off and washed with EtOH or MeOH.

The filtrate was concentrated to give a crude product. The conversion in the desired product was determined by GC/MS

Selective Debenzylation Typical Experimental Procedure

Conventional Experimental Conditions

Reaction

Typical reactions were performed on a 1 mmol scale. The substrate was dissolved in 15 mL of MeOH or EtOH (0.07 M) and 1 or 2 mol % of the Silia*Cat* Pd^o catalyst was added. The mixture was degassed twice and each time replacing the vacuum by hydrogen. The reaction mixture, connected to a balloon filled with hydrogen, was stirred at room temperature until GC/MS analysis showed maximum conversion.

Reusability

To reuse the catalyst, after completion of the reaction, remove the catalyst by filtration, rinse with MeOH/THF solvents and dry under vacuum.

Hydrosilylation Using SiliaCat Pt^o

Hydrosilylation reactions (or catalytic hydrosilation) are a widely used method to prepare organosilicon products. The reaction consists of the addition of Si-H bonds on unsaturated bonds like alkenes, alkynes or ketones, where catalysts are often required (usually H₂PtCl_c). Silia*Cat* Pt^{o} can be used for hydrosilylation reactions. Some examples are shown to the right.

Hydrosilylation Typical Experimental Procedure

Conventional Experimental Conditions

Reaction

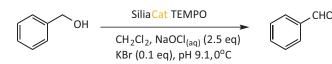
A 100 ml two neck dry round bottom flask equipped with a condenser and a rubber septum is filled with 1 mol % SiliaCat Pt^o and was degassed two times for 15 minutes kept under argon conditions. The anhydrous solvent, the silane (95% *pure*) and the olefin (*previously degassed for 15 minutes under argon*) were added using a syringe. The reaction mixture was either stirred at room temperature or heated at 60°C until the GC/MS analysis showed maximum conversion

Note: Unless otherwise indicated, all manipulations were carried out under argon conditions. In general, reactions were performed on a 2 mmol scale in 15 ml anhydrous toluene.

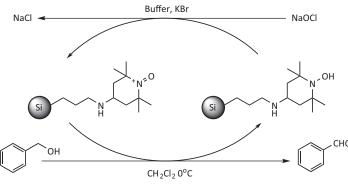
Hydrosily	Hydrosilylation using Silia <i>Cat</i> Pt ^o								
Substrate	Time (h)	Temp. (°C)	Conversion (%)	Selectivity (%)					
1-octene	5	22/60	88 / 99	98 / 99					
1-decene	5	22/60	100 / 100	97 / 98					
1-octadecene	5	22 / 60	95 / 98	56 / 83					
4-vinyl- benzamine	5 / 24	60	47 / 80	96 / 96					
3,3-diethoxy- prop-1-ene	5	22/60	94 / 100	93 / 81					


```
Work-up
```

Once the reaction is complete the catalyst was filtered off and washed with toluene. The filtrate was concentrated to give a crude product. The conversion in the desired product was determined by GC/MS.


Oxidation Using SiliaCat TEMPO

Aldehydes and ketones, either as starting materials, synthetic intermediates, or final products, are of great interest in synthetic chemistry. Such carbonyl-containing products can lead to carbon-carbon (i.e. Wittig, Aldol, alkylation) or carbon-nitrogen bond formation. Over the years, chemists have discovered various oxidizing agents such as pyridinium chlorochromate (PCC), MnO2, Dess-Martin periodinane, or Swern oxidation conditions. Although all these methods lead to the aldehyde (limited oxidation of the aldehyde to the carboxylic acid), they have drawbacks such as the hazards and toxicity associated with residual metal contamination.


Catalytic Performance and Leaching

SiliaCat TEMPO was investigated in the Montanari-Anelli conditions. The catalytic cycle involves regeneration of the oxidative species with NaOCI (commercially available bleach) in presence of KBr as co-catalyst to form the stronger anion OBr-.

Unless otherwise stated, the reaction shown below was used for the demonstration.

Development of environmentally friendly methods such as selective catalytic oxidation of alcohol substrates to aldehydes and ketones can have significant impact on modern methods of chemical synthesis. SiliaCat TEMPO is the oxidation solution of choice.

Cataly	Catalytic Performance and Leaching									
Silia <i>Cat</i> (mol %)	Time (h)	Conversion (%) TON		Si Leaching (ppm)						
0.1	1	95	950	-						
0.01	2	83	8,300	3						
0.01	3	95	9,500	1.6						
0.01	4	97	9,650	1.5						
0.02	2	96	4,800	-						
0.02	3	100	5,000	2						

SiliaCat TEMPO can be used with as low as 0.01 mol % guantity to provide the desired aldehyde in short reaction times. ICP analysis confirms that the material is leach-resistant ($[Si] \leq 3$ ppm).

Silia*Cat* TEMPO Reusability

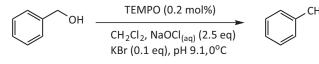
Minimal leaching and the robustness of SiliaCat TEMPO's organoceramic matrix allow it to be reused several times for further uses.

Silia <i>Cat</i>	TEMPO Reu	sability						
Reusability	Time (min)	Conversion (%)	Reusability	Time (min)	Conversion (%)	Reusability	Time (min)	Conversion (%)
1 st	30	100				9 th	30 / 60	97 / 100
2 nd	30	100	8 th	30 / 60	95 / 100	10 th	30 / 60	90 / 100

^aSiliaCat TEMPO is recycled by post-reaction filtration, DCM washes and air drying.

Influence of Co-Catalyst KBr and Temperature

SiliCycle investigated wether it was necessary to use a co-catalyst (KBr) for the reaction to proceed effectively. As shown in the table, although KBr is not required for the reaction, it does have a significant impact on the kinetics. The reaction can still proceed to completion without KBr but requires longer time and/or more SiliaCat TEMPO. It was also demonstrated that the reaction can be carried out a room temperature without KBr.


Influence of Solvents, pH and NaOCI

As shown on the right, the reaction can be carried of at pH 9.0 or at pH 7.5 in DCM with high conversion yields. The catalytic conditions are selective towards the aldehyde, rather than the carboxylic acid, even with 10 equiv of NaOCI. At pH 7 in water, the reaction is slower, but this can be overcome by using more NaOCl_(aq). At pH 9, the conversion is high, but too much bleach and the long reaction time in the aqueous media will lead to the corresponding carboxylic acid. The reaction can also be pursued in other organic solvents.

SiliaCat TEMPO vs Homogeneous TEMPOs

Comparative analysis versus homogeneous TEMPO demonstrates the Silia*Cat* TEMPO to be comparable or better at neutral pH and significantly superior in basic conditions.

	Influence of KBr and Temperature										
	Silia <i>Cat</i> (mol %)	KBr (eq.)	Temp. (°C)	Time (min)	Conversion (%)						
	0.1	0.1	0	60	95						
	0.1	0	0	60	80						
t	0.1	0	0	210	100						
L	0.2	0	0	105	96						
	0.2	0	22	60	76						
	0.2	0	22	90	87						

Influence of Solvent, pH and NaOCI _(aq)									
Silia <i>Cat</i> (mol %)	NaOCl _(aq) (eq.)	Solvent	рН	Time (min)	Conversion (%)				
0.2	2.50	DCM	9.0	60	98				
0.2	10.00	DCM	9.0	90	98				
0.2	1.25	DCM	7.5	60 / 90	83 / 86				
0.2	2.50	DCM	7.5	60 / 90	94 / 98				
0.2	1.25	H ₂ O	7.5	60 / 90	57 / 65				
0.2	2.50	H ₂ O	7.5	60 / 90	87 / 88				
0.7	1.20	H ₂ O	9.0	60 / 150	83 / 89				
0.8	5.00	H ₂ O	9.0	60 / 18 h	60 (19)/ 7 (89)				
0.2	1.25	EtOAc	9.0	60 / 90	95 / 96				

¹ In parenthesis = conversion to carboxylic acid.

Silia <i>Cat</i> TEMPO vs Homogeneous TEMPOs						
рН	Silia <mark>Cat</mark> TEMPO	4-MeO-TEMPO	4-Oxo-TEMPO			
7.5	91	99	45			
9.0	98	55 (40) ¹	73			

¹ In parenthesis = conversion to carboxylic acid.

Substrate Scope with SiliaCat TEMPO

Silia*Cat* TEMPO is efficient with different substrates and can be used with phase a transfer agents such as Aliquat 336. When an electron-rich benzylic alcohol cannot be oxidized successfully with NaOCI, conditions involving I₂ in toluene, at room temperature, will yield the desired product.

Substrate (R)	Catalyst (mol %)	Time (min)	Conversion (%)
3-NO ₂	0.4	90	100
4-NO ₂	0.4	90	98
4-OCH ₃	0.4	90	36
4-OCH ₃	0.4 (0.05 eq. Aliquat 336)	60	79
4-Cl	0.4	90	95
3-phenyl- 1-propanol	0.4	60	97
1-phenyl- 3-propanol	0.4	180	95
4-OCH ₃	8.2	16 h	99 ¹
3-OCH ₃	7.8	16 h	96 ¹
Piperonal	10.0	20 h	100 ¹

¹Exp. Cond.: I₂ (1.8 eq.), NaHCO₃(aq), pH 8, toluene, 22°C.

Conclusion of Oxidation

In conclusion, the SiliaCat TEMPO is an effective oxidizing catalyst presenting unique advantages such as high activity, robustness, leach-proof properties and selectivity toward the oxidation of alcohols into aldehydes and ketones, both very valuable products in organic chemistry.

46

Oxidation Typical Experimental Procedure

Oxidation of Alcohols or Aldehydes to Carboxylic Acid

Note: changing the solvent to water, increasing temperature and the amount of bleach will all favor the acid formation.

Conventional Experimental Conditions

Reaction

Under mechanical agitation, a 0.4M solution of alcohol in water and a 0.5 M aqueous solution of KBr were cooled at 0°C in an ice bath. The desired amount of Silia*Cat* TEMPO was added, followed by an aqueous solution of NaOCI (from 10-13% bleach) buffered at pH 9 (using NaHCO₃) or pH 6.7 (*using* NaH₂PO₄/Na₂HPO₄). NaOCI was added slowly over a 10 minute period as the reaction is exothermic. The mixture was warmed to room temperature (20°C) and stirred between 1,300-1,500 rpm. The temperature can be increased to 35°C if necessary.

Once the reaction was complete (determined by TLC or GC-MS), the catalyst was filtered at room temperature, and the pH was adjusted to 12 with aqueous NaOH (2N). The aqueous phase was separated, acidified with HCI 6N and extracted with CH₂Cl₂. The organic phase was dried over MgSO, and evaporated. The residue was purified by crystallization or column chromatography on silica gel.

- 1.2 5 eq. of NaOCl_(an) (typically start with 3 eq. and, if necessary, add another 2 eq. of NaOCl via an addition funnel after all of alcohol is consumed)
- 0.1 eq. of potassium bromide (KBr) (prepared as a 0.5 M solution)
- pH 9 is achieved using a NaHCO, buffer or a pH of 6.7 is achieved using a sodium phosphate buffer (1:1 mixture of 0.67 M NaH₂PO₄ and 0.67 M Na₂HPO₄)
- 0.01 1 mol % of Silia*Cat* TEMPO (*typically 1 mol %*)
- The best solvents are H₂O, ACN/H₂O or DCM/H₂O, typically at 0.4 M (molar concentration with respect to the substrate)

Oxidation of Primary or Secondary Alcohols

Under Montanari-Anelli Conditions (using NaOC

Reaction

Under mechanical agitation, a 0.4M solution of the alcoho in dichloromethane is mixed with a 0.5M aqueous solution of KBr and cooled at 0°C in an ice bath. The desired amount of SiliaCat TEMPO is then added, followed by an aqueous solution of NaOCI (from commercially available 10-13% bleach), then the solution is buffered at pH 9 (using NaHCO₃). NaOCI solution is added slowly over a 10 minute period as the reaction is exothermic. The mixture is then stirred between 1,300-1,500 rpm.

Work-up

Once the reaction is complete (determined by TLC or GC-MS), the catalyst is filtered at room temperature, and the organic phase is dried over MgSO₄ and evaporated. Crude mixture is purified using flash chromatography, if needed

- For Miller conditions: 1.8 eq. of solid iodine (I_2)
- 0.001 1 mol % of SiliaCat TEMPO (typically 1 mol %)
- the substrate)

SiliCycle Publications

SiliaCat TEMPO Oxydation

Topics in Catalysis, 2010, 53, 1110-1113 Organic Process Research & Development, 2010, 14, 245-251 Chemistry Today, 2009, 27, 13-16 Organic Process Research and Developement, 2007, 11, 766-768

Hydrogenation of nitroarenes with SiliaCat Pt^o

Advanced Synthesis & Catalysis, 2011, 353, 1306-1316 Catal. Sci. Technol., 2011, Advance Article, DOI: 10.1039/C1CY00097G

Suzuki coupling with SiliaCat

Catal. Sci. Technol., 2011, Advance Article, DOI: 10.1039/C1CY00119A Topics in Catalysis, 2010, 53, 1059-1062

Selective debenzylation with SiliaCat Pd^o

ChemCatChem, 2011, 3, 1146-1150

Under N	Ailler Conditions (using I ₂ co-catalyst)
Conve	entional Experimental Conditions
Reacti	on
toluene is aqueous one porti	echanical agitation, a 0.4M solution of alcohol in s mixed at room temperature (20°C) with a 0.3 M solution of NaHCO ₃ . Solid iodine is then added in on to the mixture, followed by the desired amount t TEMPO.
Work-	up
<i>GC-MS</i>), f mixture s acetate, a Na ₂ SO ₃ . T a saturate and driec	reaction is complete (determined by TLC or the catalyst is filtered at room temperature. The hould then be cooled to 5°C, diluted with ethyl and quenched with a 0.8M aqueous solution of the uncolored organic phase is then washed with ed aqueous solution of NaHCO ₃ followed by brine l over MgSO ₄ . After filtration and evaporation of nts, the crude mixture can be purified using flash ography.

• For Montanari-Anelli conditions: 1.2 - 5 eq. of NaOCl_(a) (typically 2.5 eq.) and 0.1 eq. of KBr (prepared as a 0.5 M solution)

• The best solvents are DCM, EtOAc or ACN/H₂O (HPLC grade), typically at 0.4 M (molar concentration is with respect to

SiliaBond® Oxidants

SiliaBond Pyridinium Chlorochromate (R24030B) and SiliaBond Pyridinium Dichromate (R24530B)

Loading 20.0% w/w Endcapping: No Category: Oxidant Format: 5g, 10g, 25g, 50g, 100g, 250g, 500g, 1kg, 10kg, 25kg, ..., Multi-Ton

50

Description

SiliaBond Pyridinium Chlorochromate (Si-PCC)

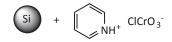
is commonly used for the oxidation of alcohols to carbonyl compounds, selective oxidation of allylic and benzylic alcohols, organometallic oxidation, oxidative transpositions, oxidative cleavages, allylic and benzylic oxidation and oxidative cyclizations.¹⁻⁴ Using PCC immobilized onto silica gel provides anhydrous conditions that may otherwise promote side reactions and reduce yields. It greatly facilitates removal of polymeric reduced chromium by-products and is

SiliaBond Pyridinium Dichromate (Si-PDC)

may be used as an alternative to Si-PCC in nucleoside and carbohydrate oxidation, particularly for fragile molecules.¹⁰ SiliaBond PDC can also be used in conjunction with tertbutylhydroperoxide for a variety of oxidative transformations.¹¹

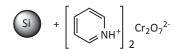
Si-PDC is a very convenient and effective reagent for oxidizing allylic and benzylic alcohols, saturated

Solvent compatibility


• Anhydrous CH₂Cl₂

Prolonged storage

• Keep cool (< 8°C) and dry


compatible with acid-sensitive protecting groups.^{5,6} When used in conjunction with ultrasounds, kinetics are increased and the amount of oxidant required to complete the reaction is decreased.⁷⁻⁹

Pyridinium Chlorochromate (Si-PCC)

with acid-sensitive groups, such as cyclopropane rings or ketal functions.¹²

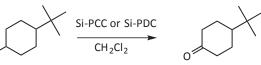
Pyridinium Dichromate (*Si*-PDC)

¹J. Org. Chem., 54, **1989**, 5387 ² Tetrahedron Lett., 42, **2001**, 2141 ³ Synlett, 10, **1999**, 1630 ⁴Synth. Commun., 26, **1996**, 225 ⁵ J. Org. Chem., 58, **1993**, 2509 ⁶ J. Chem. Educ., 76, **1999**, 974 ⁷ J. Org. Chem., 48, **1983**, 666 ⁸ Liebigs Ann. *Chem.*, **1993**, 173 ⁹ J. Org. Chem., 57, **1992**, 3867 ¹⁰ J. Chem. Soc. Perkin Trans. I, **1982**, 1967 ¹¹ J. Chem. Soc. Chem. Commun., 7, 1993 651 ¹² Tetrahedron, 35, **1979**, 1789

SiliaBond Potassium Permanganate (R23030B)

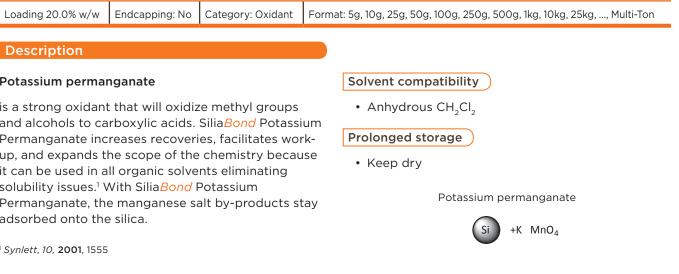
Description

Potassium permanganate


is a strong oxidant that will oxidize methyl groups and alcohols to carboxylic acids. Silia*Bond* Potassium Permanganate increases recoveries, facilitates workup, and expands the scope of the chemistry because it can be used in all organic solvents eliminating solubility issues.¹ With Silia*Bond* Potassium Permanganate, the manganese salt by-products stay adsorbed onto the silica.

¹ Synlett, 10, 2001, 1555

Oxidation of Alcohols to Aldehydes and Ketones


General procedure

SiliaBond PDC or SiliaBond PCC (2 eq.) and acetic acid (4 mmol) were addeed to a solution of the alcohol % mmol) in CH₂Cl₂ (7.5 mL). The resulting mixture was stirred for 6 h at room temperature. Ether (15 mL) was added, and after stirring for another 2 min, the solution was filtered and the solids were washed with ether (4 x 9 mL). Concentration under vacuum afforded the required product.

Oxidation of Alcohols Results					
Silia <i>Bond</i> Oxidant	Conditions	Conversion ^a			
Silia <i>Bond</i> PCC	6 h, room temperature	100%			
Silia <i>Bond</i> PDC	6 h, room temperature	100%			

^a Determined from the isolated product

SiliaBond[®] Reagents

SiliaBond Reagents

Amide Coupling Reagents

The amide bond is the defining molecular structure of proteins and peptides. In addition, a report estimates that as many as 25% of all synthetic pharmaceutical drugs contain an amide group.¹ Therefore, there is an ongoing scientific endeavor to develop efficient amidation methodologies.² Usually, the amide bond formation relies on the use of an excess of toxic coupling reagents such as carbodiimides or supernucleophiles. These chemicals produce a large amount of by-products, which tends to complicate the isolation and purification of the desired amide product.

The use of a reagent linked to an insoluble material has become a widely used tool since the introduction of the solid-phase synthesis concept.³ Solid-phase reagents are valuable for amide coupling with a carboxylic acid because of the decrease of unwanted side products. Other advantages to using solidsupported reagents include improved stability, toxic chemical immobilization, the ability to run multiple transformations in a single pot, and the flexibility to use both batch reactions and flow chemistry.

¹ J. Comb. Chem. 1999, 1, 55.

- ² Tetrahedron 2005, 61, 10827.
- ³ J. Am Chem Soc. **1963**, 85, 2149.

SiliaBond Carbodiimide (R70530B)

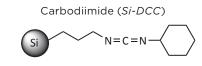
Loading: 1.0 mmol/g Endcapping: Yes Category: Reagent Format: 5g, 10g, 25g, 50g, 100g, 250g, 500g, 1kg, 10kg, 25kg, ..., Multi-Ton

54

Description

SiliaBond Carbodiimide (Si-DCC)

1,3-Dicyclohexylcarbodiimide (*DCC*) has arguably become the most commonly used reagent in peptide synthesis and other amide bond-forming reactions of primary and secondary amines with carboxylic acids.¹ The major drawback associated with using DCC is the formation of the urea by-product (*DCU*) which remains in solution and requires additional purification steps to remove. However, by using covalently bonded DCC on silica, it is possible to avoid problematic purifications. Only a simple filtration step is needed to remove the unwanted DCU.


¹Chem. Rev. 1981. 81. 589.

Solvent compatibility

Aprotic Solvent

Prolonged storage

• Keep cool (< 8 °C) and dry, store under argon

SiliaBond Ethyl-Dimethylamino Carbodiimide (EDC) (R70630B)

Loading: 0.8 mmol/g Endcapping: Yes Category: Reagent Format: 5g, 10g, 25g, 50g, 100g, 250g, 500g, 1kg, 10kg, 25kg, ..., Multi-Ton

Description

SiliaBond Ethyl-Dimethylaminopropyl Carbodiimide (Si-EDC)

A recent literature review shows that 1-ethyl-3 (3-dimethylaminopropyl) carbodiimide (EDC) has become recognized as one of the best reagents for amide coupling reactions. Unfortunately, using the EDC basic tertiary amine results in the formation of urea, which has to be separated from the product by acidic aqueous extractions.¹ By attaching EDC to silica, it is possible to avoid this potentially problematic work-up without sacrificing the useful carbodiimide reactivity. In fact, Silia*Bond* EDC behaves in a similar fashion as EDC in solution, but the by-product remains on the solid support.

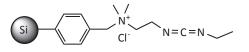
¹ The Peptides: Analysis, Synthesis, Biology; Academic: New York, 1979, 1, 241.

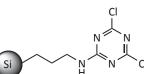
SiliaBond Dichlorotriazine (R52230B)

Loading: 0.7 mmol/g Endcapping: Yes Category: Reagent Format: 5g, 10g, 25g, 50g, 100g, 250g, 500g, 1kg, 10kg, 25kg, ..., Multi-Ton Solvent compatibility Aprotic Solvent Prolonged storage • Keep cool (< $8 \circ C$) and dry, store under argon Dichlorotriazine (Si-DCT)

Description SiliaBond Dichlorotriazine (Si-DCT) 2,4,6-Trichloro[1,3,5]triazine (cyanuric chloride) has been used as a versatile reagent in alkyl chloride and acid chloride synthesis. This triazine has been especially useful as a coupling reagent for amide selective formation.¹ However, cyanuric chloride is toxic, corrosive, and a severe eye, skin and respiratory tract irritant. By anchoring cyanuric chloride on a silica matrix, it is now possible to use this valuable reagent without worrying about its toxicity profile. SiliaBond DCT reacts in a similar manner as cyanuric chloride. In addition, excess reagent and by-product elimination is reduced to a simple filtration, which is particularly useful for products where toxicity is a concern such as in the synthesis of active pharmaceutical ingredients (API).

¹ J. Org. Chem. 1997, 62, 982.


Solvent compatibility


• Aprotic Solvent

Prolonged storage

• Keep cool (< 8 °C) and dry, store under argon

Ethyl-Dimethylaminopropyl Carbodiimide (Si-EDC)

SiliaBond HOBt (R70730B)

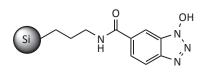
Loading: 0.7 mmol/g Endcapping: Yes Category: Reagent Format: 5g, 10g, 25g, 50g, 100g, 250g, 500g, 1kg, 10kg, 25kg, ..., Multi-Ton

56

Description

SiliaBond HOBt (Si-HOBt)

Hydroxybenzotriazole (HOBt) has been used for increasing yield and decreasing racemization during chiral amide synthesis. However, dry HOBt can undergo exothermic decomposition. Bonding HOBt to silica eliminates this risk of explosion. SiliaBond HOBt can be easily activated and should ideally be used with a base such as N,N-diisopropylethylamine in the same condition as in homogeneous solution. Moreover, this supported reagent can be reused a few times without adversely affecting its performance.

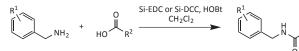

Solvent compatibility

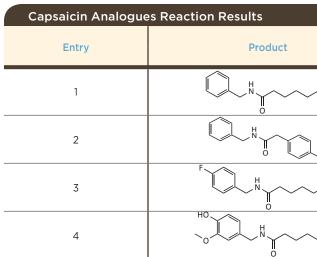
Aprotic Solvent

Prolonged storage

• Keep cool (< $8 \circ C$) and dry, store under argon

HOBt (Si-HOBt)




NEW

PRODUCT

Synthesis of Capsaicin Analogues

Capsaicin's potential clinical use as an analgesic and peripheral anti-inflammatory effects, as well as the The acid (0.5 mmol) was placed in an oven-dried discovery of an ultra-potent analogue (*resiniferatoxin*) reaction vial with anhydrous CH_2CI_2 (10 mL) under N_2 . has attracted significant interest in finding capsaicin The HOBt (1.0 mmol) and the SiliaBond Carbodiimide synthesis routes. or Silia*Bond* EDC were added to the solution, which Si-EDC or Si-DCC, HOBt was then stirred briefly (5 min). The amine (0.5 mmol) CH_2CI_2 was then added to the reaction tube, and the mixture was then stirred for 16 h at room temperature. Finally, the reaction was followed by GC-MS.

^aYield calculated in crude product, ^bPurity determined by GC-MS, ^cYield determined by GC-MS

Amine Protection Using Benzylcarbamate Group

Benzylcarbamate groups are one of the most used amine protecting functions because of the easy deprotection by hydrogenenolysis. SiliaBond HOBt, as a key reactive, facilitates the protection manipulation and can be reused a few times without loss of reactivity.

General Procedure

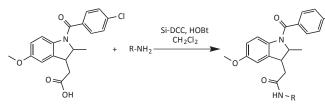
SiliaBond HOBt (1 g or 1 eq.) was introduced in a flask (oven-dried) containing anhydrous CH₂Cl₂. Benzylchloroformate (4 eq.) was added to the suspension, followed by N,N-diisopropylethylamine 4 eq. The reaction mixture was stirred for 60 minutes a room temperature. Then, the suspension mixture was filtered, and washed with CH_2CI_2 (2 x 10 mL), and the SiliaBond HOBt was oven-dried.

The dried, activated SiliaBond HOBt was placed in a flask containing anhydrous CH₂Cl₂ under N₂. To this suspension, 0.8 eq. of amine was added, and the reaction mixture was stirred for 4 to 16 h at room temperature. The reaction suspension was filtered and washed with CH_2CI_2 (2 x 10 mL).

General Procedure

	Yield ^a (Purity ^b)		
	<i>Si</i> -DCC	<i>Si-</i> EDC	
\sim	99% (> 98%)	81% (> 98%)	
Br	98% (> 98%)	88% (95%)	
\sim	99% (> 98%)	99% (> 98%)	
\sim	98%°	98% ^c	

Activation Reaction

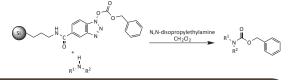

1 nt	Activation and recycling Results				
S	Entry	Yield ^a			
	Activation	96%			
	1 st Recycling	86%			
	2 st Recycling	95%			
	3 st Recycling	96%			

^aConversion determined by GC-MS

Synthesis of Amide Derivatives of Indomethacin

A report¹ has shown that indomethacin primary and secondary amide analogues are potent compounds for human COX-2 specific inhibition. SiliaBond Carbodiimide can be used as a key reagent in its synthesis.

¹ J. Med. Chem. 2000, 2860.

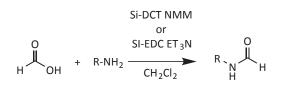

General Procedure

The indomethacin (0.56 mmol) was placed in an oven-dried reaction vial in anhydrous dichloromethane (5 mL) under N_a. HOBt (0.95 mmol) and the Silia*Bond* Carbodiimide (*1.12 mmol*) were added, and the mixture was stirred briefly (5 minutes). Then, the amine (0.56 mmol) was added to the vial, and the reaction was stirred at room temperature for 16 h. Then, the crude product was directly purified on a short plug of silica gel (hexane/EtOAc 1/1) to yield pure amide.

Amide Derivatives of Indomethacin Results						
Entry	Entry Amine Yield ^a					
1	H ₂ N	90%				
2	H ₂ N	82%				
3	H ₂ N	94%				
4	H ₂ N-Br	78%				

^aConversion determined by GC-MS

Amine Protection Reaction


Amine Protection Results					
Entry	Product	Conversion ^a			
1	N ^{Cbz}	98% (4 h)			
2	~~~~~N~Cbz	94% (4 h) 96% (16 h) 86% (16 h)⁵			
3	Cbz H	81% (16 h)			
4	N ^{Cbz}	93% (4 h) 98% (16 h)			
5	Cbz H	98% (4 h)			
6	N ^{°Cbz}	93% (16 h)			

^aConversion determined by GC-MS, ^bPolymer HOBt

Synthesis of Formylated Amino Acids

N-formylamino acid esters are useful derivatives for preparing selected N-formylamino acids, incorporating polyfunctional amino acids into peptides, and for other useful starting material preparation. Formylated amino acids have been prepared in high yields by using SiliaBond Dichlorotriazine (DCT) and SiliaBond Ethyl-Dimethylaminopropyl Carbodiimide (EDC).

Synthesis of Formylated Amino Acids Results					
Entry	Product	Conversion ^a			
Litty	Floduct	<i>Si</i> -DCT	<i>Si</i> -EDC		
1	N H H	99%	93%		
2	O Z H H	99%	100%		
3	O H H	99%	99%		
4		98%	95%		

^aConversion determined by GC-MS

General Procedure

Formic acid (0.90 mmol) was placed in an ovendried reaction vial in anhydrous CH₂Cl₂ (10 mL) under N_{a} . To this solution was added triethylamine (0.90 *mmol*) and either the Silia*Bond* EDC (*2.25 mmol*) or N-methylmorpholine (0.90 mmol) and SiliaBond DCT (2.25 mmol). Then, the mixture was stirred briefly (5 minutes). The amine (0.45 mmol) was then added to the vial and the reaction was stirred at room temperature for 16 h. Conversion to the desired formamide was followed by GC-MS. Upon completion, the Silia*Bond* EDC or Silia*Bond* DCT was filtered and washed with 2 x 10 mL of CH₂Cl₂. Evaporation of the solvent yielded the desired product.

Weinreb and Acylsulfonamide Synthesis

Weinreb synthesis is a reaction often used in medicinal chemistry to produce amides. These functional groups are present in natural products and can be reliably reacted to form new carbon-carbon bonds or converted to other functions. In normal conditions, Weinreb synthesis can tolerate a large variety of functional groups such as N-protected amines, sulfonates, alpha-beta saturation and silyl ethers.

Weinreb Synthesis Results					
Anid	A min c	Yield (Purity) ^a			
Acid	Amine	<i>Si</i> -DCC	<i>Si</i> -DCT		
Benzoic Acid		99% (96%)	96% (94%)		
t-Cinnamic Acid	N,O-Dimethylhydroxyamine Hydrochloride	87% (95%)	82% (70%)		
2-Nitrobenzoic Acid		> 99% (93%)	92% (79%)		

^aYield and purity determined by GC-MS

Δ <u>ς</u>	ylsulfona	mida S	wnthae	ic Daci	ulte
- AC	yisunone	innae s	ynunea	is nes	uits

Acid	Sulfonamide	Yield (Purity) ^a		
Acid	Suronanide	<i>Si-</i> DCC	<i>Si</i> -DCT	
Benzoic Acid	Benzenesulfonamide	96% (71%)	98% (90%)	
	Methanesulfonamide	79% (53%)	71% (82%)	

^aYield and Purity determined by GC-MS

SiliaBond Cyanoborohydride for Reductive Aminations

Reductive amination involves the conversion of a carbonyl group, most of the time a ketone or an aldehyde, to an amine by an intermediate imine or iminium. The intermediate imine is reduced by sodium cyanoborohydride. This is known as direct reductive amination, and is carried out with reducing agents that are more reactive toward protonated imines than ketones and are stable under moderately acidic conditions.

SiliaBond Cyanoborohydride (R66730B)

Loading: 1.0 mmol/g Endcapping: Yes Category: Reagent Format: 5g, 10g, 25g, 50g, 100g, 250g, 500g, 1kg, 10kg, 25kg, ..., Multi-Ton

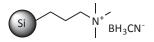
Description

SiliaBond Cyanoborohydride (Si-CBH)

SiliaBond Cyanoborohydride is the silica-bound equivalent of sodium cyanoborohydride. Bound cyanoborohydride is very useful in reductive amination and in the reduction of imines and aldehydes. Cyanide contamination of the product is a concern, however, when using the solution phase equivalent. This problem is minimized with the use of silica-bound materials since the toxic cyanide residue remains on the silica. To see if any cyanide ion was leaching from the silica, 1 g of SiliaBond Cyanoborohydride was washed in 10 mL of methanol for 24 h. Cyanide strips indicated less than 3 ppm in each test performed. In addition to providing superior conversions, acetic acid was not needed (eliminating issues with acid labile groups), the workup required only a filtration, and HCN and NaCN were not liberated during workup.

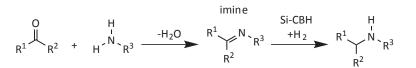
General Procedure

To 1 mmol of Silia*Bond* Cyanoborohydride 5 mL of solvent, 0.5 mmol of aldehydes or ketones and 0.6 mmol of amines were added. The reaction mixture was stirred at room temperature for 16 h. Each solution was then analysed by GC-MS.


Solvent compatibility

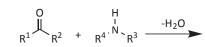
• All solvents, aqueous and organic

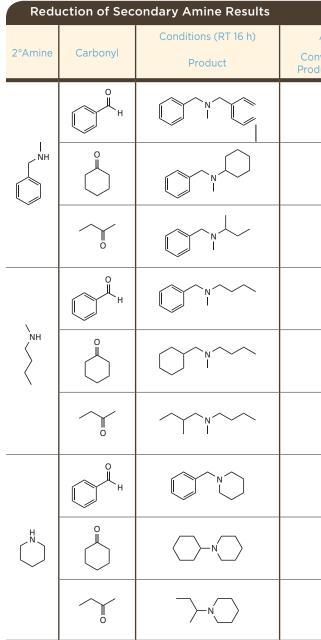
Prolonged storage


• Keep cool (< 8 °C) and dry, store under argon

Cyanoborohydride (Si-CBH)

Silia*Bond* Cyanoborohydride for Reductive Aminations

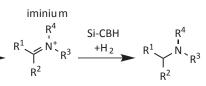

Reduction of Primary Amines



Redu	iction of Prin	nary Amine Results						
1°Amine	Conditions (RT 16 h) Acetonitrile Carbonyl Product Conversion Product (%) ^a Imine (%) ^b		Ethanol Conversion Imine Product (%) ^a (%) ^b		Methylene Chloride Conversion Product (%) ^a (%) ^b			
	ОН	N N H	27	25	64	11	69	12
NH ₂	o=		97	0	95	5	92	8
	×	N H	92	0	84	7	78	9
	O H		61	20	71	23	73	24
NH ₂	° –		92	2	83	17	81	13
	×	N H	88	3	90	7	91	6
NH ₂	O H		66	21	97	0	100	0
	0 	, H , H , H , H , H , H , H , H , H , H	91	5	93	5	93	6
	\sim		90	0	92	6	86	7

^aConversion determined by GC-MS, ^bUnreacted imine was determined by GC-MS

Reduction of Secondary Amines



°Conversion determined by GC-MS, ^bUnreacted imine was determined by GC-MS, ^cStarting Material

62

			Methylene Chloride		
SM ^c (%)⁵	Conversion Product (%) ^a	SM ^c (%)⁵	Conversion Product (%) ^a	SM ^C (%) [⊳]	
2	71	0	91	0	
F	70	17	07	7	
5	79	17	93	3	
8	79	21	93	2	
6	67	0	79	0	
23	77	20	87	3	
25	61	26	44	2	
3	80	0	83	1	
15	69	19	88	6	
0	70	21	55	2	
Э	70	21	55	2	
	5 8 6 23 25 3	Product (%)* 2 71 5 79 8 79 6 67 23 77 25 61 3 80 15 69	SMC (%) ^b Conversion (%) ^b SMC (%) ^b 2 71 0 5 79 17 8 79 21 6 67 0 23 77 20 25 61 26 3 80 0 15 69 19	SM° Conversion Product (%) ⁵ SM° Conversion Product (%) ⁵ 2 71 0 91 5 79 17 93 8 79 21 93 6 67 0 79 23 777 20 87 24 26 44 3 80 0 83 15 69 19 88	

SiliaBond Carbonate for Henry Reactions

The Henry reaction is commonly used to form carbon-carbon bonds by addition of nitroalkanes over aldehydes. This reaction is a useful technique in organic chemistry due to the synthetic utility of its corresponding products, as they can be easily converted to other useful synthetic intermediates such as nitroalkenes by dehydrogenation, alphanitro ketones by oxidation and ß-amino alcohols by reduction. Usually, the Henry reaction is carried out in presence of bases in homogeneous solution, giving low yield due to side reactions such as retroaldol and Cannizarro reactions.

General Procedure

1-nitropropane (1 eq.) was added to a solution containing THF (5 mL) and valeraldehyde (1 eq.). SiliaBond Carbonate (0.1 eq.) was added, and the mixture was stirred at room temperature for 6 h. The reaction mixture was then filtered and washed with THF and the crude product was evaporated. Finally, pure product was obtained after flash chromatography purification using a mix of hexane/ ethylacetate (80/20).

$$NO_2 + H$$
 H H NO_2 H NO_2 H NO_2 N

Henry Reaction Results					
Entry	Solvent	Reaction Conditions	Conversion		
1	THF		92% (83%) ^b		
2	CH ₂ Cl ₂		76%		
3	Ethanol	0.1 eq. Si-CO ₃ room temperature, 6 h	90%		
4	Propanol		95%		
5	None		92%		
6	THF	0.1 eq. Si-CO ₃ µwave 100 W, 100°C 10 min	89%		

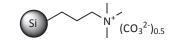
^aConversion determined by GC-MS, ^bPurity determined from the isolated product

SiliaBond Carbonate (R66030B)

Loading: 0.7 mmol/g Endcapping: Yes Category: Reagent Format: 5g, 10g, 25g, 50g, 100g, 250g, 500g, 1kg, 10kg, 25kg, ..., Multi-Ton

Description

Silia*Bond* Carbonate (*Si-CO*,)


Used as a heterogenous catalyst in the Henry reaction, Silia*Bond* Carbonate is replacing the use of expensive and toxic heterogeneous catalysts. SiliaBond Carbonate in catalytic amounts drive the reaction forward to high yield with or without solvent.

• Aprotic solvents

Prolonged storage

Keep dry

Carbonate (Si-CO₃)

SiliaBond DMAP for Baylis-Hillman and Acylation Reactions

Baylis-Hillman Reaction

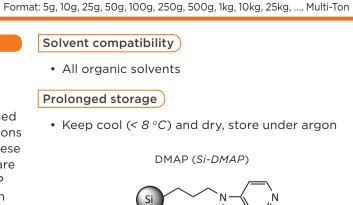
Coupling of activated alkenes, generally alpha, 1-beta-unsaturated, with aldehydes is named the Baylis-Hillman reaction. This reaction is well known for the formation of carbon-carbon bonds under soft conditions and its compatibility with several functional groups. Furthermore, an organic base can be used to catalyze this reaction with similar success to using transition metals.

SiliaBond DMAP (R75530B)

Loading: 0.8 mmol/g | Endcapping: Yes | Category: Reagent

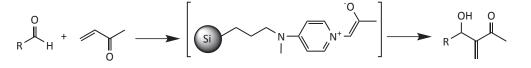
Description

SiliaBond DMAP (Si-DMAP)


Silia*Bond* DMAP is the heterogenous catalyst equivalent of 4-dimethylaminopyridine, which is used as a nucleophilic catalyst in a wide variety of reactions such as acylations and Baylis-Hillman reactions. These reactions are well known in organic synthesis and are very useful in various applications. SiliaBond DMAP has an advantage over its free counterpart as it can be removed by a simple filtration.

Acylation Reaction

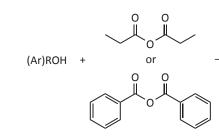
It is well-known that DMAP used as a catalyst increases speed and yield of alcohol and phenol acylations over acetic and bezoic anhydrides.


Silia*Bond*® Reagents

SiliaBond DMAP for Baylis-Hillman Reaction

General procedure

Aldehyde (1 mmol) was placed in a flask, and THF, SiliaBond DMAP (0.10 mmol), water and enone (2 *mmol*) were added. The mixture was stirred at room temperature for 6 to 96 h.


Baylis-Hillman Reaction Results						
Aldohudo	Enone		Product	Yield ^a		
Aldehyde	Enone	Conditions	Product	<i>Si-</i> DMAP	Polymer	
		THF/H ₂ O (3/1) room temperature, 6 h 10% <i>Si-</i> DMAP		81%	37%	
O ₂ N CHO		DMF/H ₂ O (3/1) room temperature, 90 min 10% <i>Si-</i> DMAP	OH O O ₂ N	75%	14%	
O ₂ N CHO		CH ₂ Cl ₂ room temperature, 24 h 10% <i>Si-</i> DMAP		74%	37%	
	OCH ₃	No solvent room temperature, 96 h 24% <i>Si-</i> DMAP	OH O O2N OCH3	71%	58%	
сі—		THF/H ₂ O (3/1) room temperature, 96 h 19% <i>Si</i> -DMAP	CI OH O	63%	15%	

^aYield determined from the isolated product

Silia*Bond* DMAP for Acylation Reactions (*Acylation of 1-phenyl-1-propanol*)

General procedure

A mixture of 2 mmol of alcohol, acetic anhydride (1.3 eq.), triethylamine (1.5 eq.), and 5% SiliaBond DMAP in 5 mL CH₂Cl₂ was stirred at room temperature for 90 min. The reaction was guenched by the addition of 0.5 mL of methanol, diluted with Et₂O, and washed twice with saturated aqueous NaHCO_z and once with brine. After drying over Na₂SO₄, the solution was filtered and evaporated to give a colorless oil in quantitative yield.

Acylation Results					
Alcohol	Catalyst	Anhydride	Reaction Conditions	Conversion	
	None	1.4 eq. Ac ₂ O	18 h, CH ₂ Cl ₂ , room temperature	25%	
\sim	5% <i>Si-</i> DMAP	1.2 eq. Ac ₂ O	2 h, CH ₂ Cl ₂ , room temperature	> 98%	
ОН	None	1.3 eq. Bz ₂ O	24 h, CH ₂ Cl ₂ , room temperature	11%	
	5% <i>Si-</i> DMAP	1.3 eq. Bz ₂ O	24 h, CH ₂ Cl ₂ , room tremperature	91%	
<u> </u>	None	1.3 eq. Ac ₂ O	18 h, CH ₂ Cl ₂ , room temperature	50%	
	5% <i>Si-</i> DMAP	1.3 eq. Ac ₂ O	40 min, CH ₂ Cl ₂ , room temperature	> 98%	
ОН	None	1.3 eq. Bz ₂ O	18 h, CH ₂ Cl ₂ , room temperature	29%	
On	5% <i>Si-</i> DMAP	1.3 eq. Bz ₂ O	2 h, CH ₂ Cl ₂ , room temperature	91%	
,OH	None	1.3 eq. Ac ₂ O	19 h, CH ₂ Cl ₂ , room temperature	18%	
	5% <i>Si-</i> DMAP	1.3 eq. Ac ₂ O	40 min, CH ₂ Cl ₂ , room temperature	> 98%	
	None	1.3 eq. Bz ₂ O	24 h, CH ₂ Cl ₂ , room temperature	6%	
	5% <i>Si-</i> DMAP	1.3 eq. Bz ₂ O	24 h, CH ₂ Cl ₂ , room temperature	88%	
ОН	None	1.3 eq. Ac ₂ O	3 h, CH ₂ Cl ₂ , room temperature	89%	
\checkmark	5% <i>Si-</i> DMAP	1.3 eq. Ac ₂ O	25 min, CH ₂ Cl ₂ , room temperature	> 99%	
\square	None	1.3 eq. Bz ₂ O	4 h, CH ₂ Cl ₂ , room temperature	63%	
	5% <i>Si-</i> DMAP	1.3 eq. Bz ₂ O	4 h, CH ₂ Cl ₂ , room temperature	94%	
ОН	None	1.3 eq. Ac ₂ O	24 h, PhH, 80°C	49% ^b	
	5% <i>Si-</i> DMAP	1.3 eq. Ac ₂ O	24 h, PhH, 80°C	80% ^b	

^aConversion determined from the isolated product, ^bDetermined by GC-FID

Silia*Bond* Tosic Acid in Fischer-Speier Esterifications

The Fischer-Speier reaction is a classic organic process where a carboxylic acid is reacted with an alcohol in the presence of an acidic catalyst to form an ester. All carboxylic acids and only primary and secondary aliphatic alcohols can be use in this reaction. The most commonly used catalysts for this reaction are highly toxic such as H₂SO₄, tosic acid and scandium triflate. Also, a large excess of one of the reagents is used to push the equilibrium towards the product.

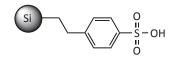
SiliaBond Tosic Acid (R60530B)

Loading: 0.8 mmol/g Endcapping: Yes Category: Reagent Format: 5g, 10g, 25g, 50g, 100g, 250g, 500g, 1kg, 10kg, 25kg, ..., Multi-Ton

Description

SiliaBond Tosic Acid (Si-SCX)

SiliaBond Tosic Acid is in a class of strong acids used in different fields of synthetic organic chemistry. The aromatic ring makes it slightly more acidic than other supported sulfonic acids. It will not dissolve in methanol or any other solvents.


SiliaBond Tosic Acid used as an acid catalyst for Fischer-Speier estherification provides excellent conversion.

- Solvent compatibility
- All solvents, aqueous and organic

Prolonged storage

• Keep dry

Tosic Acid (*Si-SCX*)

SiliaBond Tosic Acid for Fischer-Speier Esterifications

General procedure

Method A

1.5 mmol of carboxylic acid was added to a mixture of alcohol (10 mL) and SiliaBond Tosic Acid (0.1 eq.). The reaction mixture was maintained at reflux under magnetic agitation for 16 h.

Fischer-Speier Esterification Results						
Alcohol	Carboxylic Acid	Method	Ester	Conversion ^a		
Ethanol	ОН	A	OEt 0	100%		
Methanol	ОН	A	OMe	98%		
Ethanol	ОН	A	OEt OEt	100%		
1-Octanol	одон	A		100%		
1-Butanol	ОН	A	° Lo	100% (99%) ^ь		
3-Methylbutanol	ОН	A	Å.	100%		
Ethanol	О ОН	A (72 h)	O H ₂ N OEt	40%°		
Ethanol	ОН	В	OEt	94% ^c		
Methanol	ОН	В	O OEt OH	89%°		

^aConversion determined by GC-MS, ^bSi-SCX reused 3 times, ^cConversion determined from the isolated product

Method B

In a 250 mL round-bottom flask with a magnetic stirrer and a Dean-Stark apparatus, 16.3 mmol of a carboxylic acid was added to alcohol (4 eq.) and Silia*Bond* Tosic Acid (0.1 eq.). The mixture was then heated to reflux for 20 to 24 h under magnetic agitation.

SiliaBond TBD for Williamson Etherifications

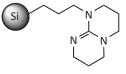
The Williamson etherification is a standard reaction to synthesize asymmetric ethers from alcoholates, prepared from primary and secondary alcohols or phenols with base, in the presence of primary alkyl halides. Because of the high reactivity of alcoholates, they need to be produced during the reaction by strong bases.

SiliaBond TBD (R68530B)

Loading: 0.9 mmol/g Endcapping: Yes Category: Reagent Format: 5g, 10g, 25g, 50g, 100g, 250g, 500g, 1kg, 10kg, 25kg, ..., Multi-Ton

Description

SiliaBond TBD (Si-TBD)

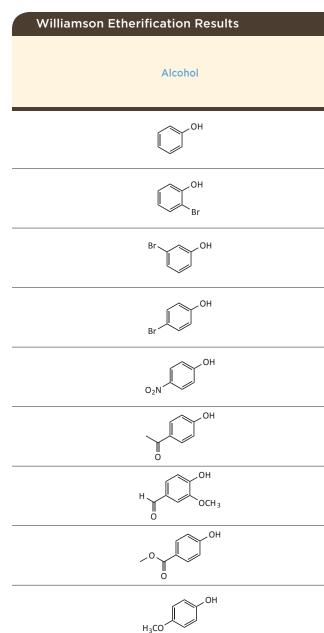

Silia*Bond* TBD is a silica-bound bicyclic guanidine moiety that is sufficiently basic to deprotonate moderately acidic hydrogens. It is most commonly used in Williamson ether synthesis.

- Solvent compatibility
- All solvents, aqueous and organic

Prolonged storage

• Keep cool (< $8^{\circ}C$) and dry, store under argon

TBD (*Si-TBD*)


SILICYCLE SiliaBo

SiliaBond[®] Reagents

SiliaBond TBD for Williamson Etherifications

General procedure

0.15 mmol of alcohol was added to 4 mL of acetonitrile and Silia*Bond* TBD (*0.3 eq.*). The solution was stirred for 1 h at room temperature. Next, 0.12 mmol of the alkyl halide was transferred to the reaction mixture, which was again stirred for 16 h at 60°C. Finally, the mixture was filtered and washed with 2 mL of acetonitrile. Conversion was measured by GC-MS.

Alkyl	Halide
	Br
83%	89%
89%	88%
81%	88%
80%	80%
59%	86%
79%	88%
87%	94%
78%	86%
76%	75%

SiliaBond Aluminum Chloride Used as a Catalyst for Friedel-**Crafts Alkylations and Acylations**

For decades, sulfonated linear alkylbenzenes (LABs) have been among the most prolific detergents. LAB synthesis is carried out by Friedel-Crafts alkylation of benzene by linear olefins using hydrogen fluoride or aluminum chloride as catalyst. The use of these catalysts presents severe problems, however. For example, aluminum chloride is difficult to separate after reaction and produces a large amount of waste effluent.

SiliaBond Aluminium Chloride (R74530B)

Loading: 1.6 mmol/g Endcapping: No Category: Reagent Format: 5g, 10g, 25g, 50g, 100g, 250g, 500g, 1kg, 10kg, 25kg, ..., Multi-Ton

Description

Silia*Bond* Aluminum Chloride (*Si-AlCl*)

Silia*Bond* Aluminum Chloride is the silica-supported version of the most widely used Lewis acid, aluminum chloride.¹ It is an effective catalyst for Friedel-Crafts alkylations²⁻⁴ and acylations. It also catalyzes the formation of ethers. The silica supported product has several advantages over the free catalyst.^{5,6}

- It is a milder Lewis acid. AICI, is so reactive that it often lacks selectivity and causes the formation of unwanted by-products.
- The steric bulk of the silica reduces over alkylation and increases shelf life.

Execution of the reaction is easier. The reagent is removed by a simple filtration, avoiding the destructive water quench which produces large amounts of hazardous waste.

SiliaBond Aluminum Chloride's activity can be determined by its color. The material should only be used when it's yellow or violet. The product turns white in presence of moisture.

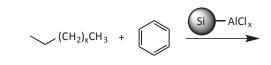
¹ Acc. Chem. Res., 2002, 35, 791

- ² Org. Process Res. Dev., 1998, 2, 221
- ³ J. Catal., **2000**, 195, 237
- ⁴ J. Catal., **2000**, 195, 412
- ⁵ Chem. Rev., 2003, 103, 4307
- ⁶ Tetrahedron, **2003**, 59, 1781

- Solvent compatibility
- All anhydrous organic solvents

Prolonged storage

• Keep cool (< 8°C) and dry, store under argon


Aluminum Chloride (*Si-AlCl*.)

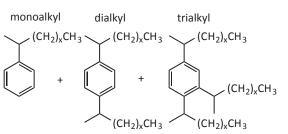
General procedure

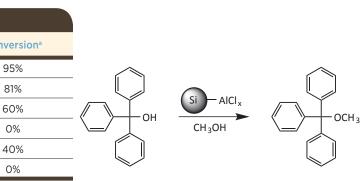
SiliaBond Aluminum Chloride (0.03 eq.) is stirred into anhydrous benzene (Typical reaction solvent volume: 5 mL/g of SiliaBond Aluminium Chloride). Add the alkene (1.0 eq.) slowly (a small exothermic reaction should be observed).

After the addition is completed, remove the catalyst by filtration.

Friedel-Crafts Alkylation Results						
Alkene	Catalyst	Alkene Conversion ^a	Selectivity Towards Alkylbenzene			
			% Mono	% Di	% Tri	
1-Hexene	AICI3	100%	58.6	31.1	10.3	
1-Hexene	Si-AICI _x	100%	71.0	28.0	1.0	
1-Decene	AICI3	100%	68.5	22.5	9.0	
1-Decene	Si-AICI _x	100%	80.0	20.0	0	

^aConversion determined by GC-MS


SiliaBond Aluminum Chloride as Catalyst for Friedel-Crafts Acylation


Friedel-Crafts Acylation Results					
Alcohol	Catalyst	Con			
Trick any loss than al	Si-AICI _x				
Triphenylmethanol	Polymer-AlCl ₃				
Tart Butyl Alcohol	Si-AICI _x				
Tert-Butyl Alcohol	Polymer-AlCl ₃				
Ranzyl Alcohol	Si-AICI _x				
Benzyl Alcohol	Polymer-AlCl ₃				

^aConversion determined by ¹H NMR

atalyst for Friedel-Crafts Alkylations

Silia*Bond* Reagents and Scavengers for Typical Coupling Reactions

Coupling Reactions	
Reaction	Reagent / Scavenger
Amide Coupling	
with acid chlorides and amines	Silia <i>Bond</i> Carbodiimide
with acids and amines	Silia <i>Bond</i> Dichlorotriazine Silia <i>Bond</i> Amine (scavenger) - removes excess acid chloride Silia <i>Bond</i> Isocyanate/Silia <i>Bond</i> Tosic Acid - remove excess of amine
using HOBt or pentafluorophenol	Silia <i>Bond</i> Carbonate - removes excess of HOBt
Buchwald Amination	Silia <i>MetS</i> Metal Scavengers - remove palladium Silia <i>Bond</i> Tosic Acid
Heck Coupling	Silia <i>Cat</i> DPP-Pd, Silia <i>Cat</i> S-Pd and Silia <i>Cat</i> Pd ^o (<i>catalyst</i>) Silia <i>MetS</i> Metal Scavengers - remove palladium
Sonogashira Coupling	Silia <i>Cat</i> DPP-Pd, Silia <i>Cat</i> S-Pd and Silia <i>Cat</i> Pd ^o (<i>catalyst</i>) Silia <i>MetS</i> Metal Scavengers - remove palladium, copper
Stille Coupling	Silia <i>Cat</i> DPP-Pd, Silia <i>Cat</i> S-Pd and Silia <i>Cat</i> Pd ^o (<i>catalyst</i>) Silia <i>MetS</i> Metal Scavengers - remove palladium, tin
Suzuki Coupling	Silia <i>Cat</i> DPP-Pd, Silia <i>Cat</i> S-Pd and Silia <i>Cat</i> Pd ^o (<i>catalyst</i>) Silia <i>Bond</i> Carbonate - removes excess of boronic acid Silia <i>MetS</i> Metal Scavengers - remove palladium
Kumada Coupling	Silia <i>Cat</i> DPP-Pd, Silia <i>Cat</i> S-Pd and Silia <i>Cat</i> Pd ^o (<i>catalyst</i>) Silia <i>MetS</i> Metal Scavengers - remove metal residue
Negishi Coupling	Silia <i>Cat</i> DPP-Pd, Silia <i>Cat</i> S-Pd and Silia <i>Cat</i> Pd ^o (<i>catalyst</i>) Silia <i>MetS</i> Metal Scavengers - remove metal residue

SiliaBond Reagents and Scavengers for Common Organic Reactions

Common Organic Reactions	l
Reaction	Rea
Reaction	-
Acylation/Esterification	Silia Silia
Deprotection of Aromatic Ether	Silia
Ether formation	Silia Silia Silia
Fmoc, Bsmoc Deprotection of Amino Acid	Silia
Friedel-Crafts Alkylation	Silia
Fries Rearrangement	Silia
Knoevenagel Condensation	Silia Silia Silia Silia Silia
Michael Addition	Silia Silia Silia
Oxidation	
alcohols to acids	Silia
alcohols to ketones or aldehydes	Silia Silia Silia
alkanes	Silia
Reduction	
with borohydride reducing agents	Silia
Reductive Amination	Silia Silia
Sulfonamide Synthesis	Silia Silia Silia
Tosylate Formation	Silia
Urea Synthesis	Silia
Williamson Ether Synthesis	Silia
Grubbs Metathesis	Silia
Sharpless Dihydroxylation	Silia
Catalytic Hydrogenation	Silia Silia
Cyanation	Silia Silia
Hydrogenation	Silia
Debenzylation of Benzyl protected Groups	Silia
Hydrosilylation	Silia

gent/Scavenge	er
---------------	----

ia*Bond* DMAP ia*Bond* TBD

ia*Bond* Tosic Acid

ia*Bond* Aluminium Chloride (*catalyst*) ia*Bond* Tosic Acid ia*MetS* Metal Scavengers - remove metal catalyst

a*Bond* Piperazine (*reagent / scavenger*) - Fmoc deprotection

ia*Bond* Aluminium Chloride

ia*Bond* Tosic Acid

ia*Bond* Amine ia*Bond* Dimethylamine ia*Bond* TBD ia*Bond* Piperidine ia*Bond* Piperazine

ia*Bond* Dimethylamine ia*Bond* TBD ia*MetS* Metal Scavengers - remove metal catalyst

ia*Bond* Potassium Permanganate

ia*Cat* TEMPO ia*Bond* Pyridinium Chlorochromate (PCC) ia*Bond* Pyridinium Dichromate (PDC)

ia*Bond* Dimethylamine

ia*Bond* Tosic Acid - removes excess and spent borohydride

ia*Bond* Cyanoborohydride ia*Bond* Tosic Acid - removes excess of amine

ia*Bond* Dichlorotriazine

ia*Bond* EDC ia*Bond* Amine - removes excess of sulfonyl chloride

ia*Bond* Tosyl Chloride

ia*Bond* Amine - removes excess of isocyanate

ia<mark>Bond</mark> TBD

ia*MetS* Metal Scavengers - remove ruthenium

a*MetS* Metal Scavengers - remove osmium

ia*Cat* DPP-Pd, Silia*Cat* S-Pd and Silia*Cat* Pd^o (*catalyst*)/ ia*MetS* Metal Scavengers - remove metal catalysts

ia*Cat* DPP-Pd, Silia*Cat* S-Pd and Silia*Cat* Pd^o (*catalyst*)/ ia*MetS* Metal Scavengers - remove metal catalysts

ia<u>Cat</u> Pt^o (*catalyst*)

ia*Cat* Pdº (*catalyst*)

a<u>Cat</u> Ptº (*catalyst*)

Flow Chemistry Applications

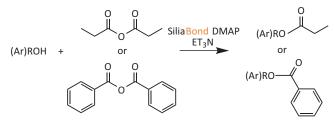
Using silica-supported products in flow chemistry applications will ensure the following

- Increase in R&D and manufacturing productivity
- Separation of the catalyst from the products does not require any filtration (or further handling)
- Flow-through processes are more reliable and safer than in batch
- Silia*Bond*, Silia*Cat* and Silia*MetS* can be used without degradation

Importance of Flow Chemistry

Flow chemistry is a relatively new technique that is being used more and more for large scale manufacturing because it only requires a small investment but enables the production of large quantities in a short time. The use of supported catalysts in flow chemistry is even more recent. Supported catalysts are available on different supports such as polymers, charcoal, alumina and silica. They offer many advantages over the traditional homogeneous catalysts, including ease of handling and purification. Silica presents many advantages such as no swelling, good mechanical and thermal stabilities and ease of scalability. SiliCycle has developed innovative silica-based catalysts (SiliaCat), reagents (SiliaBond) and metal scavengers (SiliaMetS) that can be used in flow chemistry.

Acylation Reactions Using SiliaBond DMAP

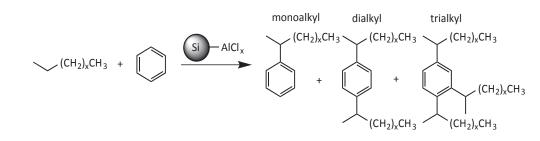

Acylation reactions can generate esters using activated carboxylic acids (acids chlorides) and alcohols, even hindered tertiary alcohols.

General Procedure (conventional - batch)

Typical reaction: acetylation of 1-phenyl-1-propanol. A mixture of 6 mmol of substrate, 1.5 eq. of acetic anhydride, 1.5 eq. of triethylamine and 5 mol % SiliaBond DMAP in 15 ml of CH₂Cl₂ was stirred at room temperature for 90 minutes. The reaction was guenched by the addition of 0.5 mL of methanol, diluted with 25 mL Et₂O, and washed twice with saturated aqueous NaHCO₇ and brine. After drying over Na₂SO₄, the solution was filtered and evaporated to give a colorless oil in a quantitative yield.

General Procedure (flow)

Typical reaction: acetylation of 1-phenyl-1-propanol. A mixture of 4 mmol of substrate, 1.5 eq. of acetic anhydride, 1.5 eq. of triethylamine in 10 mL of CH₂Cl₂ was stirred at room temperature for 5 minutes. Two fractions of 5 mL solution were introduced into the reactor charged with the 9 mol % SiliaBond DMAP (0.45 g). Upon completion of the reaction, the mixture was analyzed by GC-MS to determine the conversion.


Acylation Reactions Using SiliaBond DMAP (con't)

Acylation Read	ction Results						
Substrate	Reagent	Catalyst (eq.)	Time (h)	Flow (µL/min)	Flow Conditions Vol. Reactor (mL)	Res. Time (min)	Conversion (%) (Yield %)
		5	2	C	Conventional (Batc	h)	98 (99)
2-Octanol	Ac ₂ O	9	1.67 0.93	100.0 200.0	0.7	7.0 3.5	100 (99) 98 (99)
2-Octanol		10	24	C	Conventional (Batc	h)	91
	Bz ₂ O	9	6.67 13.3	25.0 12.5	0.7	28 56	93 (95) 95 (97)
		5	1.5	C	98 (99)		
ОН	Ac ₂ O	9	3.30 1.67 0.83	50.0 100.0 200.0	0.7	14.0 7.0 3.5	97 (99) 97 (99) 97 (99)
		5	24	Conventional (Batch)			88
	Bz ₂ O	9	1.67 3.38 6.67	100.0 50.0 25.0	2.38	24 48 96	88 (98) 94 (99) 97 (99)
		6	24	C	Conventional (Batc	h)	67
Грон	Ac ₂ O	9	3.33 6.67 16.67	50.0 25.0 10.0	2.38	48 96 239	27 (97) 40 (97) 61 (95)

Friedel-Craft Alkylations Using SiliaBond Aluminum Chloride

General Procedure (conventional - batch)

1 eq. of 1-decene was added slowly (over 30 min) to a mixture of anhydrous benzene (20 eq.) and 0.02 eq. of Silia*Bond* Aluminum Chloride (1.67 mmol/g). After the addition, the catalyst was removed by filtration and the crude product was analyzed by GC/MS.

Friedel-Cra	ıft Alkyla	tion Resu	ults						
	Time		Conversion & Selectivity (%)						
	Time (min)	Flow (μL/min)	Vol. Reactor (mL)	Res. Time (min)	Conv.	Mono	Di	Tri	
1.00	0.2	30	С	Conventional (Batch)			85	15	0
1:20	0.2	20	250	0.76	3	100	89	11	0

General Procedure (flow)

- A mixture of 1 eq. of 1-decene and 20 eq. of
- anhydrous benzene was pumped in a reactor charged with 0.2 eq. of SiliaBond Aluminum Chloride. After completion of the reaction the mixture was analyzed by GC/MS.

Knoevenagel Condensations using SiliaBond Piperidine

The Knoevenagel condensation between carbonyl compounds and methylene malonic esters produce several important products, including nitriles used in anionic polymerization and unsaturated ester intermediates employed in the synthesis of several therapeutic drugs. Alkali metal hydroxides, pyridine and piperidine are the traditional catalysts used in these reactions

80

General Procedure (conventional - batch)

A mixture of 2 mmol of benzaldehyde, 1.5 eq. of ethylcyanoacetate and 10 mol % of Silia*Bond* Piperidine in 15 mL of toluene were stirred at 110°C for 20 h. The reaction mixture was filtered, and the solvent was evaporated. The crude product obtained was analyzed by GC/MS.

General Procedure (flow)

The reactor was charged with 10 mol % of SiliaBond Piperidine (1.36 g) and heated at 110°C using toluene as solvent. A mixture of 15 mmol of benzaldehyde, 1.5 eq. of ethylcyanoacetate in 110 mL of toluene was stirred at room temperature for 5 minutes. The mixture was then introduced in a glass bottle directly connected to the pump. Upon completion of the reaction, the reaction mixture was evaporated and the crude product analyzed by GC/MS to determine the conversion ratio.

Knoevenage	el Condensation	Reaction Resul	ts			
				Flow Conditions		
Entry	Catalyst (mol %)	Time (h)	Flow (μL/min)	Vol. Reactor (mL)	Residence Time (min)	Conversion (%) (Yield %)
			Conventional (Batch)			
1	10	20		Conventional (Batch)	80 (98)
1	10 55	20 1.67	50	Conventional (Batch 0.7) 14	80 (98) 82 (99)
1 2 3				,	, 	. ,

SILICYCLE

Deprotection of Methoxymethyl Groups using SiliaBond SCX

MOM groups are used as a protecting group for alcohols. The group can be removed using an acid. In this application Silia*Bond* Tosic Acid (SCX) has been used to deprotect alcohols previously protected by chloromethyl ether.

General Procedure (conventional - batch)

A mixture of 2.5 mmol of 1-(4-(MOM)phenyl)ethanone and 0.05 eq. of Silia*Bond* Tosic Acid (0.8 mmol/g) in 10 mL of toluene/ H_2O (10:0.5) was stirred at 65°C for 4 h. The reaction mixture was filtered and the solvent was evaporated. The crude product obtained was analyzed by GC/MS. The reactor was filled with the desired amount of Silia*Bond* Tosic Acid and heated at room temperature or at 65°C using toluene as solvent. A solution of 12.5 mmol of 1-(4-(MOM)phenyl)ethanone in 50 mL of toluene was introduced in a glass bottle connected directly to a pump. A second glass bottle, connected

Deprotection of	f Methox	ymethyl	(<i>MOM</i>) Group u	sing Silia <i>Bond</i>	SCX Results			
Substrate	Catalyst (eq.)	Time (h)	Solvent	Flow (µL/min)	Flow Conditions Vol. Reactor (mL)	Res. Time (min)	Conversion (%) (Yield %)	
	0.5	2	Toluene/MeOH (0.25M)	С	Conventional (Batch)			
	0.05	4	Toluene/MeOH (0.25M)	С	Conventional (Batch)			
оомом	0.44	1.67	Toluene/MeOH (0.25M)			24	100 (100)	
	0.1	8.34	Toluene/MeOH (0.25M)	120	2.4	17.5	99 (100)	
	0.5	3.33	CH ₂ Cl ₂ (0.1 M) ^a	50	2.4	48	91 (98)	
	0.5	1.67	CH ₂ Cl ₂ (0.1 M) ^a	100	2.4	24	90 (97)	
о-Омом	0.35	1.67	Toluene/MeOH (0.25M)	100	2.4	24	88 (99)	

°at RT.

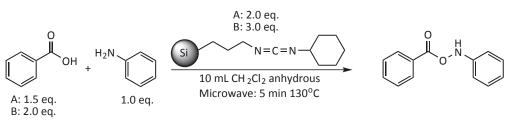
General Procedure (flow)

- toluene was introduced in a glass bottle connected directly to a pump. A second glass bottle, connected to another pump, was filled with solvent. The flow for the two pumps was different: 100 μL/min for the first pump and 20 μL/min for the second pump.
 H Upon completion of the reaction, the mixture was
- evaporated and the crude product was analyzed by GC/MS.

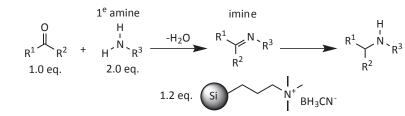
Microwave Applications

Using silica-supported products in microwave applications will ensure the following:

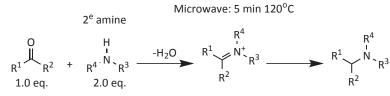
- Faster kinetics: only a few minutes per reaction
- Higher yields and excellent purities
- Compatibility with many solvents
- Silia*Bond*, Silia*Cat* and Silia*MetS* can be used without degradation
- Wide variety of reactions and applications

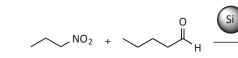

Importance of Microwave Assisted Synthesis

In recent years, microwave synthesizers have taken organic chemistry by storm. Fast kinetics, higher yields, excellent purities, wide compatibility of solvents and their applicability to a variety of reactions and applications, make them very important tools in the laboratory. After their introduction, chemists started to use supported reagents for solution-phase synthesis. The polymer-supported reagents commonly used, although very useful, have drawbacks in microwave synthesizers, namely swelling and heat instability. The high temperatures generated inside these synthesizers


82

put stress on the resins. Also, because of the small reaction volumes, the swelling of the resins can be problematic. Silica-based products on the other hand, do not suffer from such shortcomings. They are heat resistant and they do not swell. In the following pages, we present different reactions (amide synthesis, reductive amination, Henry reaction) using SiliaBond Reagents as well as an electrophile and nucleophile that demonstrate the effectiveness of these reagents for microwave applications.


Amide Couplings using SiliaBond Carbodiimide


Acylsulfonamide Synthesis Conversion (%) Results					
Amine	Carbonyl	Microwaveª 5 min	Bulk (RT, 2.5 1 h	eq. <i>Si</i> -CBH)ª 24 h	
Piperidine	Benzaldehyde	> 99	80	> 99	
N-Benzylmethylamine	Benzaldehyde	> 99	97	> 99	
3-Phenyl-1-propylamine	Cyclohexanone	> 99	88	87	

^aConversion determined by GC-FID

Henry Reactions using SiliaBond Carbonate

General Procedure

1-nitropropane (1 eq.) was added to a solution containing THF (5 mL) and valeraldehyde (1 eq.). To this reaction mixture, Silia*Bond* Carbonate (0.1 eq.) was added and maintained at 100°C for 10 min in the microwave. The reaction mixture was filtered

Amide Coupling Yield ^a (<i>Purity</i>) ^b in %					
Method	Microwave	Bulk (RT, 24 h)			
А	73.3 (88.0)	52.7 (99.5)			
В	94.9 (95.0)	80.1 (98.1)			

^aDetermined from GC-FID, ^bRefers to the isolated product

Reductive Aminations using SiliaBond Cyanoborohydride

5 mL of solvent

and washed with THF, and the crude product was evaporated. Finally, pure product was obtained after flash chromatography purification using a mix of hexane/ethylacetate (80/20).

 $(CO_3^{2})_{0.5}$

Conversion: 89%

SiliaMetS[®] Metal Scavengers

Metal Scavenging with Silia*MetS*®

Silia*Bond* Metal Scavengers BECOME Silia*MetS* Metal Scavengers!

Same Efficient & High Quality Metal Scavenger Products, Brand New Look!

SiliCycle has developed a new look and a new brand for our Metal Scavengers. These products, known as SiliaBond Metal Scavengers (i.e.: SiliaBond Thiol), are now named SiliaMetS (i.e., SiliaMetS Thiol) with a new color code. We have updated our branding to give more visibility to our metal removal solutions. This new branding will help differentiate these products from other functionalized silica gels available (reagents and other bonded phases).

88

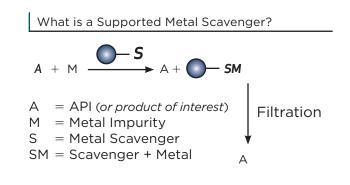
Although we changed our branding from SiliaBond Metal scavengers to SiliaMetS, no change has been made to the products themself; you will still be purchasing the same quality products that you have been enjoying for years.

SiliCycle is THE world leader and THE pioneer in metal scavenging solutions. Reasons to choose us:

- Over 12 years of know-how in silica-grafting and metal scavenging technology
- Strong, extensive, and confidential technical support and scientists to help you
- Broadest portfolio of scavengers (wide variety of *ligands*) and applications developed
- Wide range of formats for all purification scales; from laboratory to plant scale purifications
- Cited in many external publications (and patents) used by satisfied customers

Introduction

In recent years, the time pressure associated with quickly bringing candidate drugs to market has increased the number of transition metal-catalyzed reactions progressing from lead optimization to early scale-up. The removal of post-reaction metal residues has become a major issue in the pharmaceutical industry. Purification of APIs from residual metal catalyst by traditional methods (chromatography, activated carbon, distillation, etc.) often leads to problems such as high costs, time loss, low efficiency, and reduced API yields. To overcome these limitations, SiliCycle has developed SiliaMetS Metal Scavengers, a range of products that have significantly changed how chemists purify APIs.


Silica-based metal scavengers have been proven to be the purification method of choice used by

several companies from various industries. Take a look at the section "Customer Success Stories with SiliaMetS" to read about our satisfied customers. With the silica matrix advantages over polymers (no swelling, more general solvent compatibility, higher mechanical and thermal stability, easily scalable applications and availability of different formats, including SPE, flash cartridges, and bulk) and SiliCycle's expertise in grafting technology, SiliaMetS are the solution of choice for metal removal without contamination of drug candidates. SiliaMetS are highly selective and offer a cost-effective alternative for metal removal.

This section includes useful information and tips on SiliaMetS (properties and selection chart) uses, experimental procedures, and results.

What are Silia*MetS* Metal Scavengers?

Silia*MetS* Metal Scavengers are functionalized silica gels designed to react and bind excess metal complexes. The process for using scavengers is outlined in the scheme below.

SiliaMetS - Regulatory Information

For many years, Silia*MetS* Metal Scavengers have Thus, SiliCycle is committed to high quality standards been used in pilot plants by GMP pharmaceutical, and always striges to provide defect-free products. biotechnology, and fine chemical industries as well as In doing so, all products are manufactured in an contract research and manufacturing organizations. ISO 9001:2008 compliant facility and subjected to They have run their own analysis proving Silia*MetS* a stringent quality control. Every lot needs to meet Metal Scavengers can safely be used without the quality specifications and a sample from every compromising the purity of the material by leaching batch is kept for subsequent analysis. All products are of the silica-supported product. shipped with the following information:

regulatory documentation including specific analytical tests in line with your needs.

To be effective, the Metal Scavengers need the ability and inherent functionality to remove metals in their various oxidation states from the reaction mixture. For example, upon completion of a palladium metal-catalyzed reaction, the metal residue contained in the reaction can exist in both Pd (0) and Pd (II).

- Certificate of Analysis
- Purity (Leachables and extractables)
- Molecular loading
- Surface Coverage
- Volatile Content
- Material Safety Data Sheets (MSDS)
- BSE/TSE Declaration (*no animal origin*)
- Relevant Technical Information

Need specific regulatory files? SiliCycle can work with you to fill your requirements and provide you custom

Silia*MetS* Product Range

SiliCycle, a leader in functionalized silica gels, has developed a wide range of scavengers to remove a variety of metals at competitive prices.

Silia <i>MetS</i>	Product Number	Structure	Brief Description	Metals Removed	Color	Endcapping	Molecular Loading	Typical Tap Density	Solvent Compatibility	Prolonged Storage	Silia <i>MetS</i>
Silia <i>MetS</i> Thiol	R51030B	Si SH	SiliaMetS Thiol is our most versatile and robust metal scavenger for a variety of metals under a wide range of conditions. It has been used in pharmaceutical processes up to production scale.	Ag, Hg, Os, Pd ²⁺ , Pd ^o & Ru Cu, Ir, Pd, Rh ¹⁺ , Rh ²⁺ , Rh ³⁺ , Sc, Sn	White	Yes	1.20 mmol/g	682 g/L	All solvents, aqueous and organic	Keep dry	Silia <i>MetS</i> Thiol
Silia <i>MetS</i> Thiourea	R69530B	Si NH H	Silia <i>MetS</i> Thiourea is a versatile metal scavenger for all forms of palladium and is widely used in the pharmaceutical industry. Once complexed with a transition metal, it has been reported to be an effective catalyst.	Pd²+, Pdº Ag, Cu, Fe, Os, Rh¹+, Rh²+, Rh³+, Sc, Sn	Off-white	Yes	1.20 mmol/g	767 g/L	All solvents, aqueous and organic	Keep dry	Silia <i>MetS</i> Thiourea
Silia <i>MetS</i> Cysteine	R80530B	Si NH ONa	SiliaMetS Cysteine is the silica bound equivalent of the amino acid cysteine. It is a versatile scavenger for a variety of metals and the preferred metal scavenger for tin residues. By attaching the molecule to the backbone via the amino group, the thiol group remains free and accessible for higher metal scavenging efficiency.	Cd, Fe, Ir, Os, Ru, Sc & Sn Ca, Cr, Cs, Cu, La, Mg, Pd ²⁺ , Pd ⁰ , Pt, Rh ⁺¹ , Rh ⁺² & Zn	Orange	Yes	0.30 mmol/g	665 g/L	All organic solvents	Keep dry under argon	Silia <i>MetS</i> Cysteine
Silia <i>MetS</i> DMT	R79030B		Silia <i>MetS</i> DMT is the silica-bound equivalent of 2,4,6-trimercaptotriazine (<i>trithiocyanuric acid, TMT</i>). It is a versatile metal scavenger for a variety of metals and the preferred metal scavenger for ruthenium catalysts and hindered Pd complexes (<i>i.e.</i> $Pd(dppf)Cl_2$).	Ir, Ni, Os, Pd²+, Pd⁰, Pt, Rh¹, Rh¹², Rh¹³ & Ru Cd, Co, Cu, Fe, Sc & Zn	Light brown	Yes	0.50 mmol/g	732 g/L	All solvents, aqueous and organic	Keep dry	Silia <i>MetS</i> DMT
Silia Bond Amine	R52030B	Si NH ₂		Cd, Cr, Pt, Rh ⁺¹ & Rh ⁺² Co, Cu, Fe, Hg, Pb, Pd ⁺² , W & Zn	Off-white	Yes	1.20 mmol/g	700 g/L	All solvents, aqueous and organic	Keep cool (<8°C) and dry	Silia <i>Bond</i> Amine
Silia <i>MetS</i> Diamine	R49030B	Si NH ₂	Better known for their electrophile scavenging efficiency, and their base reagent quality, Silia <i>MetS</i> Amine, Diamine and Triamine are also proven scavengers for metals. They are very useful for scavenging Pd, Pt, Cr, W and Zn.	Cr, Pd ²⁺ , Pd ⁰ , & Pt Cd, Co, Cu, Fe, Hg, Ni, Pb, Ru, W & Zn	Off-white	Yes	1.20 mmol/g	728 g/L	All solvents, aqueous and organic	Keep cool (<8°C) and dry	Silia <i>MetS</i> Diamine
Silia <i>MetS</i> Triamine	R48030B	Si NH ₂		Cr, Pb, Pd ²⁺ , Pd ^o & Pt Co, Cu, Fe, Ni, Ru, W & Zn	Off-white	Yes	1.20 mmol/g	736 g/L	All solvents, aqueous and organic	Keep cool (<8°C) and dry	Silia <i>MetS</i> Triamine
Silia <i>MetS</i> Imidazole	R79230B		SiliaMetS Imidazole is a versatile metal scavenger for a variety of metals including, Cd, Co, Cu, Fe, Ni, Pd, Os, and Rh, under a wide range of conditions and the preferred metal scavenger for iron catalysts.	Cd, Co, Cu, Fe, Ni, Os, W & Zn Cr, Pd ²⁺ , Pd ⁰ , Rh ¹⁺ & Rh ²⁺	Off-white	Yes	1.20 mmol/g	681 g/L	All solvents, aqueous and organic	Keep dry	Silia <i>MetS</i> Imidazole
Silia <i>MetS</i> TAAcOH	R69030B		SiliaMetS TAACOH & TAACONa (<i>Si-Triaminetetraacetic Acid</i> or Sodium Salt) are supported versions of EDTA in their free and sodium salt forms. These two products are effective metal scavengers for Ca, Mg, Li, Ir, Cs, Os, Sn, Pd, Ni and Cu.	Co, Ni, Os & Sc Cr, Cs, Fe, Pd²+, Pdº, Rh¹+, Rh²+ & Sn	Off-white	No	0.40 mmol/g	635 g/L	All solvents, aqueous and organic	Keep dry	Silia <i>MetS</i> TAAcOH
Silia <i>MetS</i> TAAcONa	R69230B	Si OH(ONa) OH(ONa) OH(ONa) OH(ONa)	Silia <i>MetS</i> TAACOH is effective for metals in low or zero oxydation states, compared to Silia <i>MetS</i> TAACONa which is useful for metals in higher oxydation states (2+ or higher).	Cd, Cs, Cu, Fe, Ir, La, Li, Mg, Ni, Os, Rh ³⁺ , Sc, & Sn Cr, Pd ²⁺ , Pd ⁰ , Rh ¹⁺ , Rh ²⁺ & Zn	Off-white	No	0.40 mmol/g	712 g/L	All solvents, aqueous and organic	Keep dry	Silia <i>MetS</i> TAAcONa

All SiliaMetS are made of standard flash silica gel, namely 40 - 63 microns, 60 Å.

Preferred SiliaMetS Metal Scavengers for these metals Also Scavenges these metals

90

Silia*MetS*® Metal Scavengers

Features & Benefits of Silia MetS Metal Scavengers

Silia*MetS* Metal Scavengers are functionalized silica gels designed to react and bind excess metal complexes. The process for using scavengers is outlined in the scheme on page 87.

Features & Benefits of Silia <i>MetS</i>	
Features	Benefits
No leaching	No API contamination by the metal scavenger
Very High Purity	Each Silia <i>MetS</i> product manufactured is submitted to very rigorous quality control in order to provide customers with default-free products and ensure 100% satisfaction
High Selectivity	Total recovery of the API
Wide Range of Metal Species (various oxidation state)	Efficient for a wide range of metal catalysts
Fast Kinetics	Even at room temperature
Cost Efficient	Low cost per gram of metal scavenged Less solvent used
Solvent Compatibility	Can be used in any solvent, aqueous (<i>pH 2 to 12</i>) and organic
New Technologies Compatibility	Suitable for use in microwave synthesizers and flow chemistry
Excellent Stability (Thermally and Mechanically)	Works well with overhead stirring Can withstand very high temperatures
Ease of Use & Scalable	No swelling or static charge Remove easily by a simple filtration Scalable from mg up to multi-ton scale
Various Formats	Amenable to use in Silia <i>Sep</i> & Silia <i>Prep</i> Cartridges
Controlled Loading	Consistent and accurate loading insure lot-to-lot reproducibility
Available in Bulk Quantities	Available in large quantities and always in stock

Metal Scavenging Screening Service

Having a problem removing any residual metal catalyst? Contact us to take advantage of SiliCycle's expertise in metal removal. Our R&D team can find the optimal conditions for you.

Metal Scavenger Screening Services are innovative as they provide an on-hand solution to the pharmaceutical and manufacturing industries. Working with the product that needs to be free of residual metals and the restricted conditions that can be used with the compound (*i.e., solvent*, temperature), SiliCycle's Metal Scavenger Screening Service will quickly develop the most efficient metal scavenging process providing both time and cost savings. Confidentiality is assured, as in most cases the solution involves working with API and other patented materials, and easy technology transfer is guaranteed.

92

Take the step many major pharmaceutical companies have, and contact us to discuss how we can help you to reach your metal purity goals.

Many screening services adapted to your needs & budgets are available.

Silia*MetS* - Typical Experimental Procedures

Screening in Batch Reactor Mode (bulk)

To select the best scavenger for initial screening experiments, do the following steps for each SiliaMetS Metal Scavengers included in the kit. Use 4-8 molar equivalents of each SiliaMetS in respect to the residual metal concentration.

- 1. Dissolve the crude product to be treated in a suitable solvent (or use directly the crude reaction mixture) and prepare vials containing the same solution volume.
- 2. Directly, add each Silia*MetS* included in the kit to these vials. Note: no pre-wetting of the SiliaMetS is required. See "Determing the Optimal Amount of SiliaMetS to use" at page 96.
- 3. For initial tests, stir the solution for at least one hour at room temperature.
- 4. Scavenging progress can be followed by normal analytical techniques. The scavenging progress can be estimated by looking at the color of the solution as demonstrated in the figure (right). When the scavenging is almost complete, the solution is less colored and Silia*MetS* becomes colored. In some occasional cases, if all the samples are still coloured, try one or all of the following: let them react for a longer period of time; add more equivalents of the Silia*MetS*, increase the temperature of the reaction.
- 5. At the end of the scavenging, filter off the SiliaMetS using a fritted funnel or filtration device.
- 6. Wash the SiliaMetS with additional solvent for total recovery of the API (or compound of interest) and concentrate the solution under vacuum.
- 7. Analyze the residual metal concentration of each vial to identify the most efficient SiliaMetS Metal Scavenger

Note: you can choose more than one scavenger.

8. If you are satisfied with the scavenging efficiency of the best SiliaMetS, direct scale-up is possible. Otherwise, scavenging optimization can be done with SiliaMetS identified in #7 (see next section).

Screening with Silia*MetS* Fixed Bed Mode (SPE or Flash Cartridges)

Silia*MetS* fixed bed formats are a great alternative for metal removal and are directly scalable. Initial screening investigations can be done using SiliaPrep 2g/6mL SPE cartridges.

- 1. Condition the cartridge with 3-4 cartridge volume using the same solvent as the solution to be treated.
- 2. Add the solution containing the API and the metal to the top of the cartridge and let it pass through the cartridge under gravity.

Note: if needed, a slight positive pressure on the top of the cartridge or a light vacuum can be applied to speed up the flow rate.

- 3. As shown to the right, a dark coloured band will be observed on the top of the silica bed most of the time.
- 4. If the residual solution is still coloured, multiple passes through the same cartridge can be done.
- 5. Once the scavenging is completed, wash the cartridge using at least 3 column volumes of solvent to insure total API (or compound of interest) recovery.

Note: in some cases, additional washing may be required.

SiliaMetS Compatible with New Technologies

Silia*MetS* In Flow Chemistry

Metal scavenging can also be achieved using SiliaMetS in flow chemistry applications. Simply place SiliaMetS inside the solid-phase reactors provided with your flow system (like Syrris Asia® Solid Phase Chemistry *Reactors*) and let the solution to be purified flow through these reactors. Multiple reactors can be placed in series and reactors can be heated to obtain optimum scavenging results.

SiliaMetS In Microwave

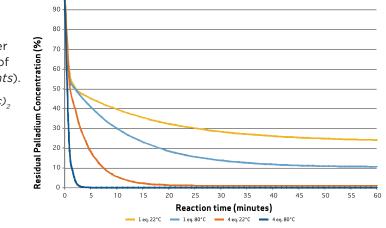
Metal removal using Silia*MetS* can also be done under microwave irradiation to provide excellent scavenging efficiency in just minutes. Simply mix the scavenger and the API dissolved in a suitable solvent a microwave tube and set-up the system with the appropriate parameters. Usually, 5 minutes is enough to scavenge all residual metals.

94

Experiment Optimization with SiliaMetS

If, upon completion of the screening procedure, the scavenging is not complete or you wish to either reduce the number of equivalents or the reaction time, optimization steps can be undertaken.

96


Various parameters can be changed one at a time or simultaneously to improve the metal removal efficiency.

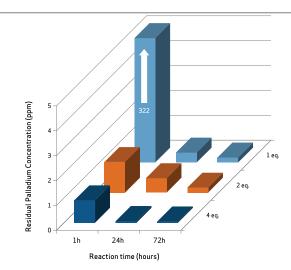
Note: you can mix multiple SiliaMetS to get superior efficiency.

Number of SiliaMetS Equivalents

For initial screening experiments we suggest 4-8 molar equivalents be used in respect to the residual metal concentration of each SiliaMetS. Once the preferred scavenger is identified, further optimization can be done to reduce the number of equivalents used (typically down to 2-4 equivalents).

Graph represents residual concentration (%) of Pd(OAc) with SiliaMetS Thiol in DMF.

Subsequent Treatments with SiliaMetS

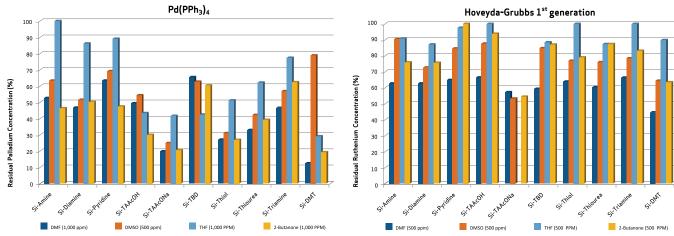

In some cases (equilibrium process or the presence of *multiple species*), multiple treatments with Silia*MetS* is suitable instead of a single treatment with a larger amount.

For optimal results, filtration between each treatment can allow for a higher scavenging efficiency.

Reaction Time

In some cases, where increasing the temperature is impossible, longer contact time with the scavenger can allow higher scavenging efficiency.

Conditions: Pd(OAc), THF, SiliaMetS Thiol, RT.



Temperature

In initial screening, we suggest the scavenging experiments be run at room temperature. Usually, metal scavenging is completed after one hour or so. However, when shorter scavenging times are required, higher scavenging rates can be achieved by

Solvent

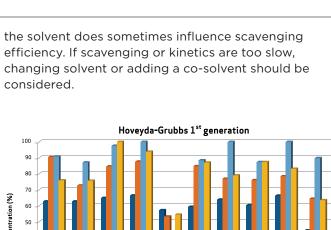
Silia*MetS* can safely be used in a wide range of organic and aqueous solvents commonly used in laboratory and in process, such as DMF, DMSO, THF, 2-butanone, alcohols, ethers, chlorinated solvent, etc. As demonstrated in the graphs below, the nature of

considered.

SiliaMetS Format (Mode Used)

One advantage of SiliaMetS is their compatibility wi various technologies. They can be used in batch, in fixed bed (SPE or Flash cartridges), in flow chemistry

Mixing Rate


SiliaMetS are mechanically stable and offer excellent scavenging efficiency in batch processes agitated by overhead and magnetic stirrers, as well as orbita shaking under low to moderate agitation rates.

pH of the Aqueous Solution

When the scavenging is done in aqueous solutions, it is possible to use SiliaMetS in a pH range of 2 to 12 Depending on the nature of the SiliaMetS, pH can

ith	or in microwave. Scavenging efficiency can be
	improved by changing the mode used.
ry,	

nt	If required, mixing rates can be increased to get
	better scavenging results. With faster stirring, you
al	improve Silia <i>MetS</i> dispersion in solution.

	modify the functional groups present on the
2.	scavengers by charging them. Scavenging can be
	affected (<i>i.e, amine groups in acidic conditions</i>).

Determining the Optimal Amount of Silia*MetS*

To get an effective metal removal, the amount of Silia*MetS* Metal Scavenger used is very important. You can determine how much scavenger will be needed by one of two ways:

- from the residual concentration (more accurate method)
- from the amount of metal catalyst used (when the residual metal concentration is unknown)

From residual metal concentration (ppm)

Knowing that the palladium (Pd) level in 800 g of material is 500 ppm (the oxidation state does not affect the calculation).

Data needed:

- Loading of the scavenger (*SiliaMetS Thiol*): 1.2 mmol/g
- Metal molecular weight: Ex. Pd = 106.42 g/mol

1. Determine the amount of palladium to be scavenged

Amount of Pd in mg = Residual r	metal concentration x Qty of product to be treated
	1,000
· · · · · · · · · · · · · · · · · · ·	800 g of product = 400 mg of Pd in 800 g of product 000
Conversion in mmol of Pd =	Amount of Pd in mg
	Metal molecular weight
Conversion in mmol of Pd =	400 mg = 3.76 mmol of Pd
	106.42 g/mol

• Amount of product to be treated : Ex. 800 g • Residual concentration of metal: Ex. 500 ppm of Pd

2.Calculate the amount of scavenger (SiliaMetS Thiol) to use (1 equivalent)

Amount of Silia*MetS* Thiol to use = Number of mmol of metal concentration SiliaMetS Thiol loading

Amount of Silia*MetS* Thiol to use = 3.76 mmol of Pd = 3.13 g of Silia*MetS* Thiol for 1 eq. 1.2 mmol/a

To scavenge 400 mg of palladium, 3.13 g of SiliaMetS Thiol is needed if using only one equivalent. However, it is highly recommend that a minimum of 4 equivalents be used at first. In this case, the amount of SiliaMetS Thiol will be 4 times higher (4 x 3.13 g = 12.52 g).

Sometimes, the metal residual concentration is unknown. In such a case, the amount (g) of palladium to be scavenged can be replaced by the amount of metal catalyst used for the reaction:

From amount of metal catalyst used

Data needed:

- Amount of metal catalyst used: Ex. 10 g of Pd(PPh₃)₄
- Metal catalyst molecular weight: Pd(PPh_z)₄ = 1,155.56 g/mol

1. Determine the amount of palladium to be scavenged

Amount of Pd in mmol = Qty of catalyst used for the reaction used x 1,000 Metal catalyst molecular weight Amount of Pd in mmol = 10 g of Pd(PPh₃)₄ x 1,000 = 8.65 mmol of Pd (max to be scavenged) 1,155.56 g/mol

The amount of SiliaMetS Thiol to be used can then be determined as stated above (see point 2. above). In this particular case, one equivalent of Silia*MetS* Thiol corresponds to 7.20 g.

Silia*MetS* Selection Guide

When selecting a metal scavenger, every parameter must be considered: metal catalyst, solvent, residual reagents, by-products, structure of the API (or molecule of interest) and temperature. The following table, shown below, helps customers in selecting the most efficient scavenger for a specific metal and application. However, since some parameters may affect the efficiency of the scavenging, we highly

SiliaMe	tSI	Met	al S	cave	eng	er S	eleo	ctio	n Ta	able	è	
Scavenger	Ag	Ca	Cd	Co	Cr	Cs	Cu	Fe	Hg	lr	La	Li
Si-Thiol												
Si-Thiourea												
Si-Cysteine												
Si-DMT												
Si-Amine												
Si-Diamine												
Si-Triamine												
Si-Imidazole												
Si-TAAcOH												
Si-TAAcONa												

Preferred scavengers Scavenges



98

recommend performing a preliminary screening experiment using the Silia*MetS* Metal Scavenger Kit.

SiliCycle also offers a confidential Metal Scavengers Screening Service. Contact us to take advantage of our expertise in metal removal. See page 93 to learn more about this service.

TEL: 1418 874.0054 FAX: 1418 874.0355 TOLL-FREE: 1877.SILICYCLE (NORTH AMERICA ONLY) WWW.SILICYCLE.COM INFO@SILICYCLE.COM

SiliaMetS Selection Guide (con't)

Silia <i>MetS</i> Meta	I Scavengers	Selection G	uide (Only Ca	atalyst in Solu	ution)												
			Catalyst, So	olvent & Conditio	ons (% of catalyst	scavenged)					Catalyst, So	olvent & Conditio	ons (% of catalys	t scavenged)			
Silia <i>MetS</i>	Pd(OAc) ₂	Pd ₂ (allyl) ₂ Cl ₂	Pd ₂ (dba) ₃	Pd(PPh ₃) ₄	PdCl ₂ (dppf)	Grubbs 1 st Gen.	Grubbs 2 nd Gen.	Hoveyda-Grubbs 1st	Hoveyda-Grubbs 2 nd	ТРАР	Ni(acac) ₂	Wilkinson's Cat.	[Rh(OAc) ₂] ₂	H ₂ PtCl ₆	Pb(OAc) ₂ .3H ₂ O	Zn(OAc) ₂ .2H ₂ O	Silia <i>MetS</i>
	DMF	DMF	DMF	DMF	DMF	DMF	DMF	DMF	DMF	DCM	DMF	DMF	DMF	DMF	DMF	DMF	
	4 eq., 4 h, 22°C	4 eq., 4 h, 80°C	4 eq., 4 h, 22°C	4 eq., 4 h, 80°C	4 eq., 4 h, 22°C	8 eq., 16 h, 80°C	8 eq., 16 h, 80°C	8 eq., 16 h, 80°C	8 eq., 16 h, 80°C	4 eq., 16 h, 22°C	4 eq., 4 h, 22°C	4 eq., 4 h, 80°C	4 eq., 4 h, 80°C	4 eq., 4 h, 80°C	4 eq., 4 h, 22°C	4 eq., 4 h, 22°C	
Silia <i>MetS</i> Thiol	> 99	> 99	98	98		96	99	93		96 [4 eq.]		> 99 [16h]	97	80 [16 h]	97	> 99	Thiol
Silia <i>MetS</i> Thiourea	> 99	> 99	98	91		98	96	98		> 99		99	97			97 [80°C]	Thiourea
Silia <i>MetS</i> Cysteine	not screened	not screened	not screened	98	not screened	not screened	not screened	not screened	not screened	not screened	92	88	not screened	99		> 99	Cysteine
Silia <i>MetS</i> DMT	98	> 99 [22°C]	> 99	> 99	Pd: 94, Fe: 92	> 99 [4 eq.]	99 [4 eq.]	98 [4 eq.]	99 [4 eq.]	> 99 [4 eq.]	97	> 99	> 99	> 99	99	94	DMT
SiliaBond Amine	98	> 99	97			97				> 99		> 99	> 99			> 99	Amine
Silia <i>MetS</i> Diamine	> 99	> 99	> 99	90		99	94	98	90	97 [4 eq.]	99	> 99	> 99 [22°C]	> 99	81	> 99	Diamine
Silia <i>MetS</i> Triamine	> 99	90	> 99	80		95		95	95	> 99	93	97	97 [22°C]	97	> 99 [80°C]	> 99	Triamine
Silia <i>MetS</i> Imidazole	not screened	not screened	not screened	not screened		not screened	not screened	not screened		not screened	91[80°C]	90	97 [22°C]	not screened		> 99	Imidazole
Silia <i>MetS</i> TAAcOH	98	93	97 [80°C]							> 99 [4 eq.]	> 99	97	96 [16 h]				TAAcOH
Silia <i>MetS</i> TAAcONa	97		80 [80°C]							> 99 [4 eq.]	> 99	88	> 99 [16 h]		90	> 99	TAAcONa

Note: other catalysts results are available on request (metal screened but not shown: calcium, cobalt, cesium, copper, iron, iridium, *lanthane, tin, & tunsgten. Contact us!*)

	al Scavengers Selection Gu										
		Catalyst, Solvent, C	ondition & Reaction			Catalyst, Solvent, Condition & Reaction					
	PdCl ₂ (PPh ₃) ₂ , Cul (in DME)	Pd(OAc) ₂ , P(o-tol) ₃ (in i-PrOH, H ₂ O)	RhCl(PPh ₃) ₃ (in Toluene)	FeCl ₃ .6H ₂ O	CuCN (in DMF)	ridium Crabtree's Cat. (in DCM)	LaCl ₃ .LiCl (in DMF)	PhCH ₂ ZnCl (in THF)			
Silia <i>MetS</i>	$\bigcap_{ar} \overset{0}{\underset{k_{1}}{_{H}}} \overset{n}{\underset{k_{2},k_{1}}{\overset{p_{H}}{\underset{k_{2},k_{1}}{\overset{(p_{1})}{\underset{k_{2},k_{2}}{\underset{k_{2},k_{2}}{\overset{(p_{1})}{\underset{k_{2},k_{2}}{\overset{(p_{1})}{\underset{k_{2},k_{2}}{\overset{(p_{1})}{\underset{k_{2},k_{2}}{\overset{(p_{1})}{\underset{k_{2},k_{2}}{\overset{(p_{1})}{\underset{k_{2},k_{2}}{\underset{k_{2},k_{2}}{\underset{k_{2},k_{2}}{\underset{k_{2},k_{2}}}{\overset{(p_{1})}{\underset{k_{2},k_{2}}{\underset{k_{2},k_{2}}{\underset{k_{2},k_{2}}{\underset{k_{2},k_{2}}}{\underset{k_{2},k_{2}}}{\overset{(p_{1},k_{2},k_{2}}{\underset{k_{2},k_{2}}}{\overset{(p_{1},k_{2},k_{2}}{\underset{k_{2},k_{2}}}{\underset{k_{2},k_{2}}}{\overset{(p_{1},k_{2},k_{2}}{\underset{k_{2},k_{2}}}{\underset{k_{2},k_{2}}}{\overset{(p_{1},k_{2},k_{2}}{\underset{k_{2},k_{2}}}{\underset{k_{2},k_{2}}}{\overset{(p_{1},k_{2},k_{2}}}{\underset{k_{2},k_{2}}}{\underset{k_{2},k_{2}}}{\underset{k_{2},k_{2}}}{\underset{k_{2},k_{2}}}$	$\begin{array}{c} & & \\$	$ \begin{array}{c} 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	164, 22°C	GV 30 minutes, MW	$ \begin{array}{c} 0 \\ \hline \\ - & \\ \end{array} \\ \left. \begin{array}{c} Crabtries' catalyst \\ H_{2s}DCM \\ \hline \\ 22^{2}C, 16 h \end{array} \right. \\ \left. \begin{array}{c} 0 \\ \hline \\ - & \\ \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \end{array} \right\right) \\ \left. \begin{array}{c} 0 \\ \end{array} \\ \left. \end{array} \\ \left. \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \end{array} \\ \left. \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \end{array} \right\right) \\ \left. \end{array} \right\right) \\ \left. \end{array} \\ \left. \begin{array}{c} 0 \\ - & \\ \end{array} \\ \left. \\ \\ \left. \end{array} \\ \left. \end{array} \right\right) \\ \left. \end{array} \\ \left. \end{array} \\ \left. \end{array} \right\right) \\ \left. \end{array} \\ \\ \left. \end{array} \\ \right\right) \\ \left. \end{array} \\ \left. \end{array} \\ \\ \left. \end{array} \\ \left. \end{array} \right\right) \\ \left. \end{array} \\ \right\right) \\ \left. \end{array} \\ \\ \left. \end{array} \\ \right\right) \\ \left. \end{array} \\ \\ \left. \end{array} \\ \\ \left. \end{array} \\ \left. \end{array} \\ \\ \left. \end{array} \right\right) \\ \\ \left. \end{array} \\ \left. \end{array} \\ \left. \end{array} \right\right) \\ \\ \left. \end{array} \\ $	O IPMgci	0,N	Silia <i>MetS</i>		
	8 eq., 4 h, 22°C	5 eq., 4 h, 40°C	65 eq., 4 h, 22°C	5 eq., 4 h, 22°C	10 eq., 4 h, 22°C	4 eq., 4 h, 22°C	1 eq., 4 h, 22°C	4 eq., 4 h, 80°C			
	Sonogashira Coupling	Suzuki Coupling	Wilkinson Hydrogenation	Michael Addition	Rosemund von-Braun Cyanation	Alkene Hydrogenation	1,2-Addition on Ketone	Negishi Coupling			
Silia <i>MetS</i> Thiol	Pd: 89, Cu: 29	98			94				Thiol		
Silia <i>MetS</i> Thiourea	Pd: 72, Cu: 80	92	81	82	> 99				Thiourea		
Silia <i>MetS</i> Cysteine		84	88	> 99	> 99	86	Li: 75, La: > 99	91	Cysteine		
Silia <i>MetS</i> DMT	Pd: 98, Cu: > 99	> 99	94	98	> 99			84	DMT		
SiliaBond Amine		80	93	98	98			94	Amine		
Silia <i>MetS</i> Diamine		80		> 99	> 99			95	Diamine		
Silia <i>MetS</i> Triamine				98	> 99			91	Triamine		
Silia <i>MetS</i> Imidazole		88	92	98	95			94	Imidazole		
Silia <i>MetS</i> TAAcOH			81	98	80				TAAcOH		
Silia <i>MetS</i> TAAcONa			88	> 99	> 99	80	Li: 95, La: > 99	94	TAAcONa		

Scavenging > 99 % Silia*MetS*® Metal Scavengers


Scavenging 95 - 99 % Scavenging 90 - 94 % Scavenging 80 - 89 %

100

TEL.: 1 418 874.0054 FAX: 1 418 874.0355 TOLL-FREE: 1 877.SILICYCLE (NORTH AMERICA ONLY) WWW.SILICYCLE.COM INFO@SILICYCLE.COM

SiliaMetS - A GlaxoSmithKline Case Study¹

A metal scavenging study was performed following the synthesis of a key synthetic intermediate obtained by the Suzuki-Miyaura coupling presented below. Various parameters were investigated including the efficiency of SiliaMetS in different formats, scavenging kinetics, intermediate recovery and purity.

Scavenging Efficiency, Recovery & Purity

Small-Scale Scavenging (Synthesis Scale ~ 5 g)

Table below shows the most efficient SiliaMetS Metal Scavenger products for the treatment of the reaction mixture after work-up in both bulk and fixed mode bed (pre-packed SPE cartridges).

Silia <i>MetS</i> Scavenging Efficiency & Intermediate Recovery Results										
Silia <i>MetS</i>	Batch Reacto 5 eq., 4 h, 22°C	r Mode (<i>Bulk</i>) 5 eq., 4 h, 40°C	Fixed Mode (<i>SPE</i>) 6 mL / 1 g	Intermediate Recovery						
Silia <i>MetS</i> Thiol	95%	> 99%	98%	> 99%						
Silia <i>MetS</i> Thiourea	83%	93%	99%	98%						
Silia <i>MetS</i> Cysteine	84%	91%	97%	> 99%						
Silia <i>MetS</i> DMT	97%	> 99%	> 99%	98%						
Initial Pd Concentration:	Concentration: 179 ppm in MTBE		76 ppm in Toluene	-						

Scavenging Conclusion

Addition of only 5 equivalents of SiliaMetS products for 4 hours at the end of the reaction reduces the residual metal concentration to single digit ppm.

Recovery & Purity Conclusion

Palladium was completely removed, while the organic compound was not sequestrated by SiliaMetS products. No impurities were released.

¹ Org. Proc. Res. & Dev., 2008, 12, 896

Larger Scale Scavenging (Synthesis Scale ~ 55 g)

SiliaMetS Metal Scavengers in pre-packed SiliaSep Flash Cartridges are a great alternative for metal removal at process development scale. These cartridges offer excellent scavenging efficiency as

Silia <i>Sep</i> Scave	enging Results
Run #	Scavenging
1	97%
2	99%
3	> 99%
Initial Dd Canaantuatia	

Initial Pd Concentration: 700 ppm in AcOEt

Experimental Conditions:

Cartridge Size: 120 g of Silia*MetS* Thiol Nb. Equivalent of Silia*MetS* Thiol: 25 eq. Solution Volume: 1 liter Flow Rate: 40 mL / min

Metal Scavenging in Flow Chemistry (Preliminary Results)

Flow chemistry is a relatively new technique that is gaining in popularity for large scale manufacturing because of the small investment needed to be able to produce large quantities in a short time. Silia*MetS* Metal Scavengers can also be used in flow chemistry

Silia <i>MetS</i> Thiol Sca	Silia <i>MetS</i> Thiol Scavenging Results in Flow Chemistry											
Flow Rate	Solution Volume	Contact Time with Silia <i>MetS</i> Thiol	Time Needed to Treat the Solution	Scavenging Results								
1.50 mL/min	100 mL	16 min	1h1O	94.0%								
1.00 mL/min	100 mL	24 min	1h40	94.3%								
0.75 mL/min	50 mL	32 min	1h10	94.5%								
0.50 mLmin	50 mL	48 min	1h40	95.0%								
Initial Pd Concentration	on: 547 ppm in EtOAc	Experimental Conditions:	Scavenger Used:	Total Solution Volume:								

shown by results in t below. After the first run, almost all the palladium is captured. After three runs, less than 1 ppm remained in solution.

to scavenge metals. A crude reaction mixture purified using a Syrris ASIA® Flow Chemistry System is presented below.

SiliaMetS Thiol Silia*MetS* Nb. Equivalent: 13.5 eq. Reactors: 2 x 12 mL Reactors in Series

100 mL Purification Scale: 12.5 g Temperature: 22°C

Variation of Phosphorous Ligand Nature & Scavenging

Even for the same metal, a variation in the scavenging efficiency can be observed depending on the nature of the products present in the solution to be treated. For example, the steric hindrance of a catalyst and the electronic effects of the phosphorous ligands, are factors influencing the removal of the metal. The same suzuki coupling shown on page 27 was performed using

different phosphorous ligands; three monodentate and three bidentate ligands. For comparison purposes, scavenging screening was done by using the same two sets of conditions. No optimization was done to increase Silia*MetS* performance. By experience, using longer reaction times or higher temperatures will allow for better results.

Silia <i>MetS</i> Scavenging Results with Monodentate Ligands										
	Triphenylpho	sphine [PPh ₃]	Tri(o-tolyl)phos	phine [P(otol) ₃]	Tri-n-butylphosphine [PnBu ₃]					
Silia <i>MetS</i>										
	4 eq., 4 h, 22°C	4 eq., 4 h, 60°C	4 eq., 4 h, 22°C	4 eq., 4 h, 60°C	4 eq., 4 h, 22°C	4 eq., 4 h, 60°C				
Silia <i>MetS</i> Thiol	70%	97%	87%	96%	26%	85%				
Silia <i>MetS</i> Thiourea	55%	86%	54%	82%	18%	41%				
Silia <i>MetS</i> Cysteine	69%	76%	77%	90%	17%	44%				
Silia <i>MetS</i> DMT	95%	97%	95%	> 99%	36%	87%				
Initial Pd Concentration:	27 ppm	n EtOAc	84 ppm	in EtOAc	90 ppm in EtOAc					

Silia <i>MetS</i> Scavenging Results with Bidentate Ligands										
	1,1'-bis(diphenylphosp	hino)ferrocene [dppf]	1,3-bis(diphenylphos	ohino)propane [dppp]	(+/-) BINAP					
Silia <i>MetS</i>	€ C P C Fe	₽° ₽°	© © ^{P~}	© ∼ [₽] ℃						
	4 eq., 4 h, 22°C	4 eq., 4 h, 60°C	4 eq., 4 h, 22°C	4 eq., 4 h, 60°C	4 eq., 4 h, 22°C	4 eq., 4 h, 60°C				
Silia <i>MetS</i> Thiol	50%	69%	75%	90%	31%	56%				
Silia <i>MetS</i> Thiourea	3%	23%	40%	60%	33%	21%				
Silia <i>MetS</i> Cysteine	29%	36%	47%	55%	19%	29%				
Silia <i>MetS</i> DMT	14%	22%	95%	98%	41%	64%				
Initial Pd Concentration:	63 ppm	in EtOAc	93 ppm	in EtOAc	16 ppm in EtOAc					

Scavenging Conclusion

In all cases, Silia*MetS* DMT and Thiol remained the better scavengers throughout the study, even though there is a variation in the nature of the ligand.

Ruthenium Scavenging with Silia MetS

Ruthenium-based catalysts are commonly used
in organic synthesis, mainly in olefin metathesis
reactions [ROM(P) and RCM]. Grubbs and Hoveyda-
Grubbs catalysts are the most popular ruthenium-
based complexes in this field of applications.Silia*MetS* allow the maximal tolerated concentration
of the residual ruthenium to be reached. A ruthenium
scavenging study was conducted and various
parameters were investigated in order to learn more
about their influence on the scavengers' robustness
as well as to establish the best experimental
conditions.

Ruthenium Sc	Ruthenium Scavenging Results using SiliaMetS										
Cillia Made	Grubbs 1 st Gen.		Grubbs 2 nd Gen.		Hoveyda-Gr	ubbs 1 st Gen.	Hoveyda-Grubbs 2 nd Gen.				
Silia <i>MetS</i>	Toluene ¹	DMF ²	Toluene ¹	DMF ²	Toluene ¹	DMF ²	Toluene ¹	DMF ²			
Silia <i>MetS</i> Thiol	90%	96%	-	99%	97%	93%	-	-			
Silia <i>MetS</i> Thiourea	-	98%	-	96%	97%	98%	-	-			
Silia <i>MetS</i> DMT	95%	99%²	> 99%	99%²	> 99%2	98%²	98%²	99%²			
SiliaBond Amine	95%	97%	92%	-	-	-	-	-			
Silia <i>MetS</i> Diamine	99%	99%	91%	94%	> 99%	98%	-	90%			
Silia <i>MetS</i> Triamine	-	95%	-	-	93%	95%	-	95%			
Silia <i>MetS</i> TAAcOH	93%	-	-	-	-	-	-	-			
Silia <i>MetS</i> TAAcONa	96%	-	96%	-	98%	-	-	-			

Exp. Conditions: ¹8 eq. of Silia*MetS*, 16 h, 80°C; ² Only 4 eq. of Silia*MetS*. Initial concentration: 500 ppm for all ruthenium-based catalysts.

Note: Silia*MetS* Cysteine and Imidazole were not screened in this study (*and are not currently available for this application*). Only Silia*MetS* results higher than 90% are presented in this table.

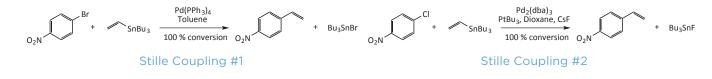
SiliaMetS vs Other Purification Methods

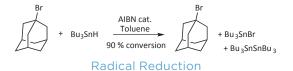
The use of Silia*MetS* to remove ruthenium catalyst after a ring-closing metathesis (*RCM*) reaction is the most effective purification method. As demonstrated below, the main advantage is that no product is lost during the purification step.

Scavenging Results for Various Purification Methods							
Scavenging	Scavenger	Filtrati	on over packed be	Flash Purification			
	Silia <i>MetS</i> DMT ¹	Act. Carbon	Celite	Silica	Manual	Silia <i>Sep</i> Cart.	
Ruthenium captation	93%	73%	24%	58%	70%	73%	

¹ Using 4 eq., 16h, 22°C. ² Solution is passed directly on a packed bed of various adsorbents, which was then washed with the same quantity of solvent.

*Quantitative yield obtained for each purification method (*adjusted in function of the residual concentration of catalyst*). No impurities were generated in all cases using the different methods (*determined by NMR*).


EtO ₂ C CO ₂ Et	+ RCM Catalyst -	Contraction (Contraction Contraction Contr
Diethyl diallylmalonate MW: 240.300 g/mol (1.153 g, 4.8 mmol)	Grubbs 2 nd Gen. MW: 848.97 g/mol (1.018 g, 1.2 mmol)	RCM Product MW: 212.245 g/mol (1.0188 g, 4.8 mmol/g) (quantitative yield)


Tin Scavenging with SiliaMetS

Organotin compounds are versatile reagents commonly used in organic synthesis. The two main applications are in Stille couplings or radical reactions. The removal of tin residues can often be an issue due to the high toxicity of this metal.

Traditional removal methods for this impurity are treatment with an aqueous solution of KF, NH₄OH or NaOH, or with bases such as DBU. However, the efficiency of these methods can vary and may be inapplicable for particular compounds.

Silia*MetS* Cysteine & TAAcONa can be used to efficiently remove tin residues from organic mixtures as demonstrated by the exemples below.

Tin Scavenging using Silia <i>MetS</i> Cysteine & TAAcONa								
Reactions	Inital	Silia <i>MetS</i> Cysteine		Silia <i>MetS</i> TAAcONa				
	Concentration	4 eq., 4 h, 22°C [2 treatments]	8 eq., 4 h, 22°C	4 eq., 4 h, 22°C [2 treatments]	8 eq., 4 h, 22°C	4 eq., 16 h, 22°C		
Stille coupling #1 ¹	3,385 ppm	99%	64%	96%	62%	-		
Stille coupling #2 ¹	981 ppm	90%	66%	66%	50%	-		
Radical Reduction	4,090 ppm	92%	88%	90%	90%	90%		

¹ Pd residues were completely removed after only one treatment with SiliaMetS Cysteine.

SiliaMetS[®] Metal Scavengers

Osmium Scavenging with SiliaMetS

Osmium products are very useful in organic synthesis. One of the most commonly used is osmium tetroxide (OsO_4) , which is a very reliable and powerful reagent for the cis-dihydroxylation of alkenes. However, osmium compounds, in particular OsO,, are highly poisonous, even at low exposure levels, and must be handled with appropriate precautions.

Therefore, it is important to efficiently remove residual osmium from products of interest.

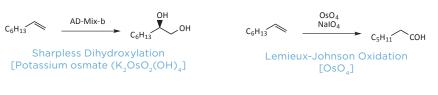
A scavenging study on three organic reactions involving osmium reactants were performed. The metal scavenging efficiency of SiliaMetS is highlighted in the table on the following page.

Osmium Scavenging with Silia*MetS* (con't)

Osmium Scavenging using Silia <i>MetS</i>								
Silia <i>MetS</i>	Dihydroxylation	Dihydroxylation Sharpless Dihydroxylation		Lemieux-Johnson Oxidation				
	4 eq., 4 h, 22°C	8 eq., 4 h, 22°C	8 eq., 16 h, 22°C	8 eq., 4 h, 22°C	8 eq., 16 h, 22°C			
SiliaMetS Thiol	87%	> 98%	> 98%	87%	92%			
SiliaMetS Cysteine	89%	> 98%	> 98%	87%	91%			
Silia <i>MetS</i> DMT	92%	97%	> 98%	87%	91%			
SiliaMetS Imidazole	87%	> 98%	> 98%	89%	91 %			
Initial Os Concentration:	132 ppm in EtOAc	25 ppm in EtOAc		21 ppm in EtOAc				

Note: > 98 % of scavenging means < 0.5 ppm of osmium.

Multiple Metal Scavenging with Silia*MetS*


Silia*MetS* can be used to remove multiple metals in the same reaction with excellent efficiency. The Negishi coupling presented below was performed to show that Silia*MetS* can be used to simultaneously remove residual zinc, palladium, and iron present after the reaction.

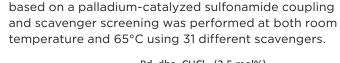
Multiple Removal Scavenging Results							
Silia <i>MetS</i>	Palladium	Iron	Zinc				
Silia <i>MetS</i> Cysteine	95%	> 99%	98%				
Silia <i>MetS</i> DMT	83%	93%	99%				
Silia <i>MetS</i> Imidazole	84%	91%	97%				
Silia <i>MetS</i> TAAcONa	97%	> 99%	> 99%				
Initial Concentration:	188 ppm in THF	110 ppm in THF	6 ppm in THF				

Conditions: 4 eq. of SiliaMetS (relative to palladium), 4 h, 22°C.

Silia*MetS*® Metal Scavengers

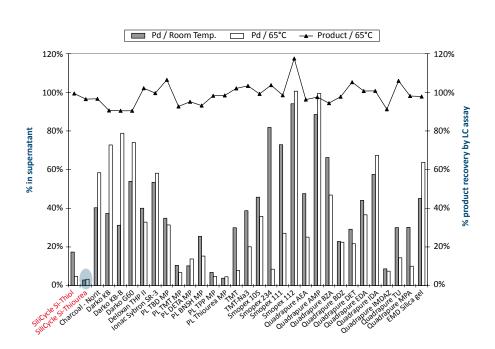
21 ppm in EtOAc

Silia*MetS* Success Stories Published by Customers


SiliaMetS Metal Scavengers are being used by many pharmaceutical companies, several of which are now using them in pilot plants. In the literature, you can find a number of success stories published by customers highlighting the ease of use and reliable performance of SiliaMetS. Some examples are presented in the following pages.

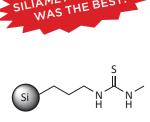
An Amgen Case Study¹

In 2009, Amgen published a chapter in "Catalysis of Organic Reactions" related to the use of scavengers for the removal of palladium in small to multi-kilogram production scale. In their study, they evaluated various parameters such as the scavenging efficiency, the influence of the scavenger loading and the loss of product to adsorption (*recovery*). The study was


Amgen Scavenger Screening Results

Condition: 20 mg of each scavenger (20% w/w) in 2 mL HPLC vial that contains 1 mL of crude reaction mixture containing 100 mg of product. Each vial was sealed and agitated overnight. Initial palladium concentration was 423 ppm.

The **BEST** scavenger identified during their study was the Silia*MetS* Thiourea providing the lowest Pd content (residual palladium concentration: 3% or < 14 ppm) without product sequestration. They mentioned that Silia*MetS* Thiourea was used extensively in early process development work.



¹Catalysis of Organic Reactions, Chapter 5. Application of Scavengers for the Removal of Palladium in Small Lot Manufacturing

Allgeier & al., Amgen Inc., Thousand Oaks (California)

SiliaMetS[®] Metal Scavengers

SiliaMetS Thiourea

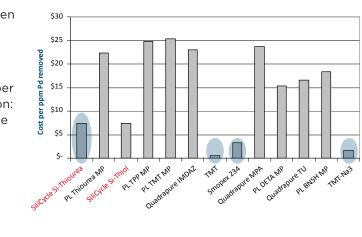
Cost Comparison for Most Efficient Scavengers ($\geq 80\%$)

At pilot-plant scale, the optimal compromise between the cost per ppm removed and the scavenging efficiency is crucial. The histogram at right shows a cost comparison on best scavengers identified.

Results highlighted by the graph reduced the number of options to only 4 candidates for further evaluation: in pole position the Silia*MetS* Thiourea , and then the TMT, TMT-Na3, and the Smopex 234.

Top 4 Scavengers Overview

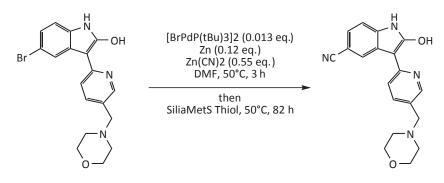
A screening validation was conducted on 1 g scale and product recovery was determined by HPLC (see purification (10 mL of solution) with 20% w/w of each *below*). Silia*MetS* Thiourea was chosen for the large top 4 scavengers at 65°C overnight. After filtration, scale purification. See Amgen's paper for further residual metal concentration was analyzed by ICP-MS details.


Screening Validation Results on Top 4 Scavengers								
	Residual	Metal Concentratio	on (<i>ppm</i>)	Product				
Scavengers	Screening Exp. in Solution	Validation Exp. in Solution	Validation Exp. in Solid Product ¹	Recovery	Commentary			
SiliCycle Thiourea	14	11	158	102%	Best performance but also most expensive.			
ТМТ	33	15	264	104%	Fine in suspension, filterability concerns on scale.			
Smopex 234	36	38	496	84%	Favorable cost but product recovery inadequate			
TMT-Na3	85	81	1 555	78%	Very basic compounds (<i>not effective with base-sensitive groups</i>). Low recovery.			
Purification Scale:	100 mg	1 g	1 g	1 g				
Initial Concentration:	423 ppm	381 ppm	3,577 ppm					

Note: 'Solid product is obtained by dividing the metal concentration in ppm by the amount of product in the test (19).

Amgen's Conclusion

"Scavengers offer a practical and expedient option for removal of palladium from process streams to ensure quality of organic products... The screening protocol involves treatment of a candidate process stream with 20% w/w scavenger on product at both room temperature and 65°C followed by analysis of Pd and product adsorption. High-temperature treatment increased the efficiency of Pd removal... Evaluation of process costs is key to identifying Pd removal solutions. While scavengers add cost to a process, their use is often justified by the speed to production in early phase development."

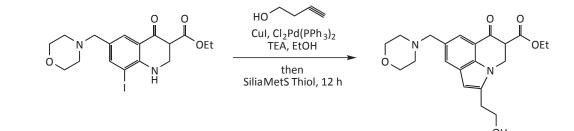


An AstraZeneca Case Study

Publication: Ryberg, P., Organic Process Research & Development, 12, 2008, 540 Process Chemistry, AstraZeneca PR&D, Sweden.

In 2008. AstraZeneca published a paper in which they removed palladium impurities in a large-scale process. The workup method found to work the best was a treatment with SiliaMetS Thiol (25% w/w or ~1.4 kg)

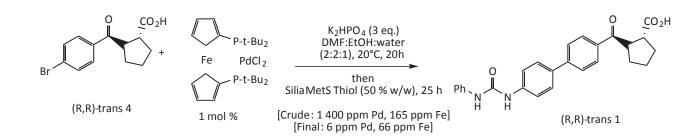
at 50°C to purify more than 6.7 kg of material. Final residual palladium concentration was as low as 1-2 ppm.



A Pfizer Global R&D Case Study

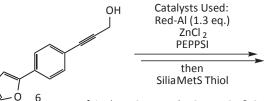
Publication: Dorow, R.L. & all, Organic Process Research & Development, 10, 2006, 493 Pfizer Global Research and Development, Kalamazoo, Michigan (USA)

In 2006, Pfizer published a paper in which they removed palladium & copper impurities in a 20 kg pilot plant scale. They made two subsequent treatments using Silia*MetS* Thiol (20% + 7% w/w) at room temperature for 12 hours. After scavenging with Silia*MetS* Thiol, the desired product was obtained with a yield of 76% containing only 17 ppm Pd and 1 ppm Cu. An alternative method was also tried using


80% w/w of Deloxan THP (*Degussa AG*) overnight followed by basification with Na₂CO₃. Residual metal concentration with this method was higher compared to that of Silia*MetS* and the yield was lower (about 60%-70%). SiliaMetS allows lower residual metal concentration & higher yield with fewer manipulations!

An Abbott Laboratories Case Study

Publication: Ravn, M.M. & all, P., Organic Process Research & Development, 14, 2010, 417 Global Pharmaceutical R&D, Process Research & Development and Discovery, Abbott Laboratories, Chicago, Illinois (USA)


In 2010, Abbott Laboratories published a paper in which they removed palladium and iron impurities using SiliaMetS Thiol (50% w/w relative to 1). Thus,

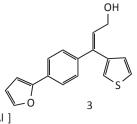
A Johnson & Johnson Case Study

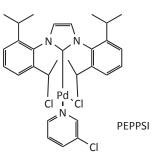
Publication: Houpis I.N. & all, Organic Process Research & Development, 13, 2009, 598

In 2009, Johnson & Johnson (*J&J*) in collaboration with Solvias published a paper in which they developed a mild Sonogashira reaction using various metal catalysts. Treatment with Silia*MetS* Thiol simultaneously removed Pd, Cu & Al. Residual

[Final: < 50 ppm Pd, 10 ppm Cu & 3 ppm Al]

110

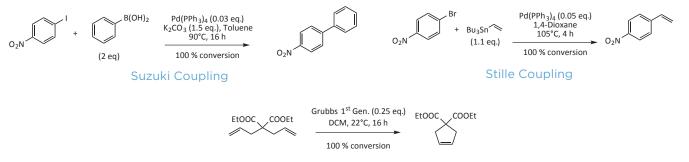



palladium and iron levels were respectively 6 ppm and 66 ppm. Refer to Abbott's publication for more details.

Johnson & Johnson PRD, API Development, Belgium, and Solvias A.G., Synthesis and Catalysis, Switzerland

concentrations were below 50, 10, and 3 ppm, respectively, in the isolated product 3. Refer to J&J's publication for more details.

Note: copper comes from a previous synthesis step.


SiliaMetS Leaching & Stability Studies

SiliaMetS Metal Scavengers are being used by many pharmaceutical and biotechnological companies. Each SiliaMetS manufactured by SiliCycle is submitted to an extensive washing procedure to ensure the product exhibits extremely low levels of extractables and leachables.

SiliCycle has implemented a quality control procedure to prevent leaching that includes loading and reactivity determination, as well as leachables and extractables analysis (*silica gel purity* \geq 99.995%). The solution must be free of contaminants for the product to successfully pass the rigorous quality control tests.

To address the end users concerns for potential leaching of impurities into reaction mixtures using Silia*MetS*, we have performed three typical metal containing reactions. We then investigated the detection, identification, and quantification of possible impurities resulting from the scavengers used.

The following three transition metal catalyzed reactions were performed:

Ring-Closing Metathesis

Experimental Procedure

Crude reaction mixtures (8 mL) were placed in a standard polypropylene tube equipped with a 20 μm frit, filled with 1 g of the appropriate Silia*MetS* Metal Scavenger, and mixed for 4 h at either room temperature or 80°C. Solutions were then filtered through a 0.02 μ m filter prior to analysis.

Gel Purity Calculation Example

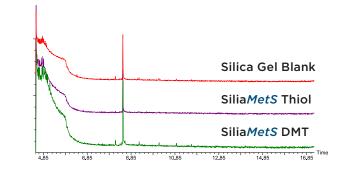
2 mg of silicon x 100 => 0.0002% impurity Impurity %: 1,000,000 mg of Silia*MetS*

Gel purity = 100 - (*Impurity %*) => 99.9998% purity

Leaching Analysis

For each Silia*MetS*, silane leaching was analyzed by ICP-OES, which has proven to be very sensitive for silicon quantification (detection limit in solution is 0.125 ppm). Traces of non-silicon containing impurities were also analyzed by GC-MS and ¹H NMR Analysis. Only results for Silia*MetS* Thiol and DMT are shown. However, no evidence of impurities was found for all SiliaMetS. Contact us for the complete study results.

Silane Leaching Analysis by ICP-OES


Results shown in the table below for SiliaMetS Thiol & DMT confirm that minimal leaching occurs with SiliCycle SiliaMetS.

Stability of Silia <i>MetS</i> in Suzuki, Stille and Ring-Closing Metathesis reactions						
Reaction (<i>solvent</i>)	Tomporatura	Silia <i>MetS</i> Thiol		Silia <i>MetS</i> DMT		
	Temperature	[Silicon]	Gel Purity	[Silicon]	Gel Purity	
	22°C	2 ppm	99.9998%	1 ppm	99.9999%	
Suzuki (<i>Toluene</i>)	80°C	2 ppm	99.9998%	2 ppm	99.9998%	
Chille (1.4 Disusse)	22°C	2 ppm	99.9998%	1 ppm	99.9999%	
Stille (1,4-Dioxane)	80°C	1 ppm	99.9999%	3 ppm	99.9997%	
Ring-Closing Met. (DCM)	22°C	2 ppm	99.9998%	2 ppm	99.9998%	

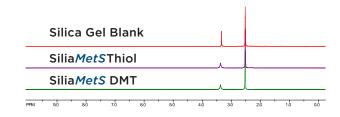
Note: Very low levels of silicon were detected in most experiments, giving product purities higher than 99.995%.

Non-Silicon Leaching Analysis

Gas chromatography-mass spectrometry (GC-MS)

Compared to the silica blank spectrum (bare silica in **Note**: each experiment was run on a 1 g aliquote of Silia*MetS* and was shaken for one hour at room temperature. In GC*solvent*), neither experiment showed evidence of any MS spectrum, peak at 8.5 minutes is the internal standard impurities for either SiliaMetS Thiol or DMT. (1-fluoronaphthalene, 100 ppm). In NMR spectrum, peaks at 2.4 and 3.4 ppm are, respectively, d6-dmso and water contained in deuterated solvent.

Stability Study (Shelf Life)


SiliCycle certifies that Silia*MetS* Metal Scavengers stored under recommended conditions in an undamaged container are guaranteed to perform for over two years from the manufacturing date without loss of performance (results at right).

112

Note: concentration given are in ppm and represent mg of silicon leached per kg of SiliaMetS.

1H NMR Analysis (d6-dmso)

Silia <i>MetS</i> Thiol after Two Years					
Lot #	QC Date	Scavenging			
11577	January 2008	> 99.9%			
11577	October 2010	99.6%			
12210	February 2008	99.9%			
12218	October 2010	99.1%			

Scavenging: 1000 ppm of Pd(OAc), in DMF. Conditions: 2 eq. of SiliaMetS Thiol, 1 h, 22°C.

Silia Metal Scavengers Ordering Information

Silia <i>MetS</i> Bulk Ordering Information							
Metal Scavenger	Part Number	Metal Scavenger	Part Number				
Silia <i>MetS</i> Thiol	R51030B	Silia <i>MetS</i> Diamine	R49030B				
Silia <i>MetS</i> Thiourea	R69530B	SiliaMetS Triamine	R48030B				
Silia <i>MetS</i> Cysteine	R80530B	Silia <i>MetS</i> Imidazole	R79230B				
Silia <i>MetS</i> DMT	R79030B	Silia <i>MetS</i> TAAcOH	R69030B				
SiliaBond Amine	R52030B	Silia <i>MetS</i> TAAcONa	R69230B				

Formats: 5g, 10g, 25g, 50g, 100g, 250g, 500g, 1kg, 5kg, 10kg, 25kg, ... up to multi-ton scale. Contact us for details.

SiliaSep Metal Scavenger Cartridges Ordering Information (see SiliaSep's section at page 157)							
Silia <i>Sep</i> Type Quantity per box	Silia <i>Sep</i> 4 g 2/box	Silia <i>Sep</i> 12 g 1/box	Silia <i>Sep</i> 25 g 1/box	Silia <i>Sep</i> 40 g 1/box	Silia <i>Sep</i> 80 g 1/box		
SiliaSep Thiol	FLH-R51030B-ISO04	FLH-R51030B-ISO12	FLH-R51030B-ISO25	FLH-R51030B-ISO40	FLH-R51030B-ISO80		
SiliaSep Thiourea	FLH-R69530B-ISO04	FLH-R69530B-ISO12	FLH-R69530B-ISO25	FLH-R69530B-ISO40	FLH-R69530B-ISO80		
SiliaSep Cysteine	FLH-R80530B-ISO04	FLH-R80530B-ISO12	FLH-R80530B-ISO25	FLH-R80530B-ISO40	FLH-R80530B-ISO80		
SiliaSep DMT	FLH-R79030B-ISO04	FLH-R79030B-ISO12	FLH-R79030B-ISO25	FLH-R79030B-ISO40	FLH-R79030B-ISO80		
SiliaSep Amine	FLH-R52030B-ISO04	FLH-R52030B-ISO12	FLH-R52030B-ISO25	FLH-R52030B-ISO40	FLH-R52030B-ISO80		
SiliaSep Diamine	FLH-R49030B-ISO04	FLH-R49030B-ISO12	FLH-R49030B-ISO25	FLH-R49030B-ISO40	FLH-R49030B-ISO80		
SiliaSep Triamine	FLH-R48030B-ISO04	FLH-R48030B-ISO12	FLH-R48030B-ISO25	FLH-R48030B-ISO40	FLH-R48030B-ISO80		
SiliaSep Imidazole	FLH-R79230B-ISO04	FLH-R79230B-ISO12	FLH-R79230B-ISO25	FLH-R79230B-ISO40	FLH-R79230B-ISO80		
SiliaSep TAAcOH	FLH-R69030B-ISO04	FLH-R69030B-ISO12	FLH-R69030B-ISO25	FLH-R69030B-ISO25	FLH-R69030B-ISO80		
SiliaSep TAAcONa	FLH-R69230B-ISO04	FLH-R69230B-ISO12	FLH-R69230B-ISO25	FLH-R69230B-ISO25	FLH-R69230B-ISO80		

Silia <i>Sep</i> Metal Scavenger Cartridges Ordering Information							
Silia <i>Sep</i> Type Quantity per box	Silia <i>Sep</i> 120 g 2/box	Silia <i>Sep</i> 220 g 1/box	Silia <i>Sep</i> 330 g 1/box	Silia <i>Sep</i> XL 800 g 1/box	Silia <i>Sep</i> XL 1600 g 1/box		
SiliaSep Thiol	FLH-R51030B-IS120	FLH-R51030B-IS220	FLH-R51030B-IS330	FLH-R51030B-IS750	FLH-R51030B-I1500		
SiliaSep Thiourea	FLH-R69530B-IS120	FLH-R69530B-IS220	FLH-R69530B-IS330	FLH-R69530B-IS750	FLH-R69530B-I1500		
SiliaSep Cysteine	FLH-R80530B-IS120	FLH-R80530B-IS220	FLH-R80530B-IS330	FLH-R80530B-IS750	FLH-R80530B-11500		
SiliaSep DMT	FLH-R79030B-IS120	FLH-R79030B-IS220	FLH-R79030B-IS330	FLH-R79030B-IS750	FLH-R79030B-I1500		
SiliaSep Amine	FLH-R52030B-IS120	FLH-R52030B-IS220	FLH-R52030B-IS330	FLH-R52030B-IS750	FLH-R52030B-11500		
SiliaSep Diamine	FLH-R49030B-IS120	FLH-R49030B-IS220	FLH-R49030B-IS330	FLH-R49030B-IS750	FLH-R49030B-I1500		
SiliaSep Triamine	FLH-R48030B-IS120	FLH-R48030B-IS220	FLH-R48030B-IS330	FLH-R48030B-IS750	FLH-R48030B-11500		
SiliaSep Imidazole	FLH-R79230B-IS120	FLH-R79230B-IS220	FLH-R79230B-IS330	FLH-R79230B-IS750	FLH-R79230B-I1500		
SiliaSep TAAcOH	FLH-R69030B-IS120	FLH-R69030B-IS220	FLH-R69030B-IS330	FLH-R69030B-IS750	FLH-R69030B-I1500		
SiliaSep TAAcONa	FLH-R69230B-IS120	FLH-R69230B-IS220	FLH-R69230B-IS330	FLH-R69230B-IS750	FLH-R69230B-I1500		

SILICYCLE

Silia*MetS* Metal Scavengers Ordering Information (con't)

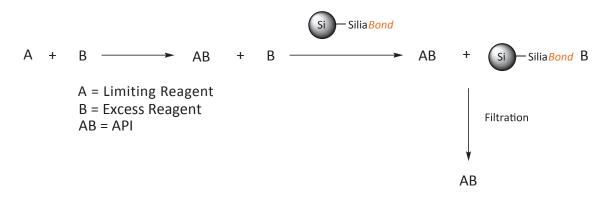
Silia <i>Sep</i> OT Metal Scavenger Cartridges (<i>rated 60 psi</i>)							
Silica Weight Quantity per box	2 g 20/box	5 g 20/box	10 g 16/box	15 g 16/box	20 g 16/box		
SiliaSep OT Thiol	SPE-R51030B-12U	SPE-R51030B-20X	FLH-R51030B-70Y	FLH-R51030B-70i	FLH-R51030B-70Z		
SiliaSep OT Thiourea	SPE-R69530B-12U	SPE-R69530B-20X	FLH-R69530B-70Y	FLH-R69530B-70i	FLH-R69530B-70Z		
SiliaSep OT Cysteine	SPE-R80530B-12U	SPE-R80530B-20X	FLH-R80530B-70Y	FLH-R80530B-70i	FLH-R80530B-70Z		
SiliaSep OT DMT	SPE-R79030B-12U	SPE-R79030B-20X	FLH-R79030B-70Y	FLH-R79030B-70i	FLH-R79030B-70Z		
SiliaSep OT Amine	SPE-R52030B-12U	SPE-R52030B-20X	FLH-R52030B-70Y	FLH-R52030B-70i	FLH-R52030B-70Z		
SiliaSep OT Diamine	SPE-R49030B-12U	SPE-R49030B-20X	FLH-R49030B-70Y	FLH-R49030B-70i	FLH-R49030B-70Z		
SiliaSep OT Triamine	SPE-R48030B-12U	SPE-R48030B-20X	FLH-R48030B-70Y	FLH-R48030B-70i	FLH-R48030B-70Z		
SiliaSep OT Imidazole	SPE-R79230B-12U	SPE-R79230B-20X	FLH-R79230B-70Y	FLH-R79230B-70i	FLH-R79230B-70Z		
SiliaSep OT TAAcOH	SPE-R69030B-12U	SPE-R69030B-20X	FLH-R69030B-70Y	FLH-R69030B-70i	FLH-R69030B-70Z		
SiliaSep OT TAAcONa	SPE-R69230B-12U	SPE-R69230B-20X	FLH-R69230B-70Y	FLH-R69230B-70i	FLH-R69230B-70Z		

Silia <i>Sep</i> OT M	Silia <i>Sep</i> OT Metal Scavenger Cartridges (<i>rated 60 psi</i>)					
Silica Weight Quantity per box	25 g 10/box	50 g 10/box	70 g 10/box	100 g 12/box		
SiliaSep OT Thiol	FLH-R51030B-95K	FLH-R51030B-95M	FLH-R51030B-95N	FLH-R51030B-276F		
SiliaSep OT Thiourea	FLH-R69530B-95K	FLH-R69530B-95M	FLH-R69530B-95N	FLH-R69530B-276F		
SiliaSep OT Cysteine	FLH-R80530B-95K	FLH-R80530B-95M	FLH-R80530B-95N	FLH-R80530B-276F		
SiliaSep OT DMT	FLH-R79030B-95K	FLH-R79030B-95M	FLH-R79030B-95N	FLH-R79030B-276F		
SiliaSep OT Amine	FLH-R52030B-95K	FLH-R52030B-95M	FLH-R52030B-95N	FLH-R52030B-276F		
SiliaSep OT Diamine	FLH-R49030B-95K	FLH-R49030B-95M	FLH-R49030B-95N	FLH-R49030B-276F		
SiliaSep OT Triamine	FLH-R48030B-95K	FLH-R48030B-95M	FLH-R48030B-95N	FLH-R48030B-276F		
SiliaSep OT Imidazole	FLH-R79230B-95K	FLH-R79230B-95M	FLH-R79230B-95N	FLH-R79230B-276F		
SiliaSep OT TAAcOH	FLH-R69030B-95K	FLH-R69030B-95M	FLH-R69030B-95N	FLH-R69030B-276F		
SiliaSep OT TAAcONa	FLH-R69230B-95K	FLH-R69230B-95M	FLH-R69230B-95N	FLH-R69230B-276F		

Silia <i>Prep</i> Meta	SiliaPrep Metal Scavenger Cartridges (see SiliaPrep's section at page 173					
Formats Quantity per box	200 mg / 3 mL 50 / box	500 mg / 3 mL 50 / box	500 mg / 6 mL 50 / box	1 g / 6 mL 50 / box	2 g / 6 mL 50 / box	
SiliaPrep OT Thiol	SPE-R51030B-03G	SPE-R51030B-03P	SPE-R51030B-06P	SPE-R51030B-06S	SPE-R51030B-06U	
SiliaPrep OT Thiourea	SPE-R69530B-03G	SPE-R69530B-03P	SPE-R69530B-06P	SPE-R69530B-06S	SPE-R69530B-06U	
SiliaPrep OT Cysteine	SPE-R80530B-03G	SPE-R80530B-03P	SPE-R80530B-06P	SPE-R80530B-06S	SPE-R80530B-06U	
SiliaPrep OT DMT	SPE-R79030B-03G	SPE-R79030B-03P	SPE-R79030B-06P	SPE-R79030B-06S	SPE-R79030B-06U	
SiliaPrep OT Amine	SPE-R52030B-03G	SPE-R52030B-03P	SPE-R52030B-06P	SPE-R52030B-06S	SPE-R52030B-06U	
SiliaPrep OT Diamine	SPE-R49030B-03G	SPE-R49030B-03P	SPE-R49030B-06P	SPE-R49030B-06S	SPE-R49030B-06U	
SiliaPrep OT Triamine	SPE-R48030B-03G	SPE-R48030B-03P	SPE-R48030B-06P	SPE-R48030B-06S	SPE-R48030B-06U	
SiliaPrep OT Imidazole	SPE-R79230B-03G	SPE-R79230B-03P	SPE-R79230B-06P	SPE-R79230B-06S	SPE-R79230B-06U	
SiliaPrep OT TAAcOH	SPE-R69030B-03G	SPE-R69030B-03P	SPE-R69030B-06P	SPE-R69030B-06S	SPE-R69030B-06U	
SiliaPrep OT TAAcONa	SPE-R69230B-03G	SPE-R69230B-03P	SPE-R69230B-06P	SPE-R69230B-06S	SPE-R69230B-06U	

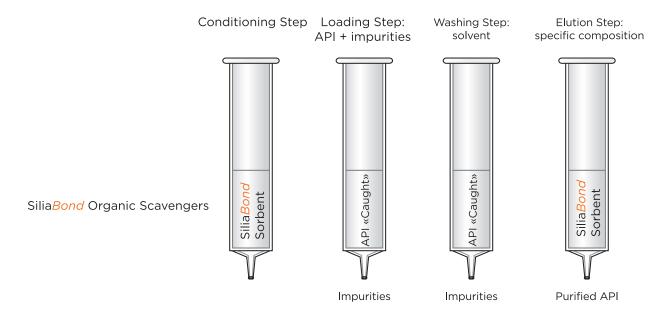
TEL.: 1 418 874.0054 FAX: 1 418 874.0355 TOLL-FREE: 1 877.SILICYCLE (NORTH AMERICA ONLY) WWW.SILICYCLE.COM INFO@SILICYCLE.COM

SiliaBond® Organic Scavengers



SiliaBond Organic Scavengers

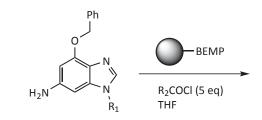
Silia*Bond* Organic Scavengers can be Used for the Purification of API's in 2 Different Ways:


Scavenge Undesired Compounds to Isolate the API

This technique is used to trap the excess of reagent and/or the impureties on the silica matrix. The API is recovered by simple filtration as demonstrated on the following scheme.

Catch and Release of the API

This method is used in an SPE cartridge format where the API is caught on the silica matrix, then filtered to eliminate all other undesired components and finally released back in solution. The catch & release method is shown below.

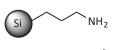

Scavenging Undesired Compounds: Electrophile Scavengers

Electrophile S	cavenger			
Function to be scavenged	Recommended Scavenger	Loading (mmol/g)	Typical conditions	Solvent compatibility
	Silia <i>Bond</i> Amine	1.6	- Add 2 - 4 eq. of SiliaBond SiliaMetS to the	All solvents
	Silia <i>MetS</i> Diamine	1.4 reaction mixture	All solvents	
Acid chlorides or sulfonyl chlorides	Silia <i>MetS</i> Triamine	1.2	- Stir for 1 h at room temperature	All solvents
Sunonyrennondes	Silia <i>Bond</i> DMAP	0.8	- Filter off the scavenger and wash with	Organic solvents
	Silia <mark>Bond</mark> Piperazine	0.8	solvent to attain acid chloride-free solution	All solvents

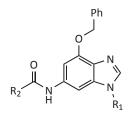
Scavenging Acid Chlorides with SiliaBond Amine

Sample Procedure

Add 1.5 eq of SiliaBond Amine to the reaction mixture, and stir for 1 h at room temperature. Filter off the scavenger and rinse with solvent to yield acyl chloride free solution. Related Publication: J. Catal., 195, 2000, 412.



Electrophile Scavenger				
Function to be scavenged	Recommended Scavenger	Loading (mmol/g)	Typical conditions	Solvent compatibility
Aldehydes or	Silia <i>Bond</i> Amine	1.6	 Add 2 - 4 eq. of Silia<i>Bond</i> to the reaction mixture Stir for 1 h at room temperature 	All solvents
carbonyls	Silia <i>Bond</i> Tosyl Hydrazine	1.5	 Filter off the scavenger and wash with solvent to yield aldehyde free solution (ketones and hindered aldehydes add 0.05 eq. of acetic acid) 	Aprotic and non carbonyl solvents


SILICYCLE

SiliaBond[®] Organic Scavengers

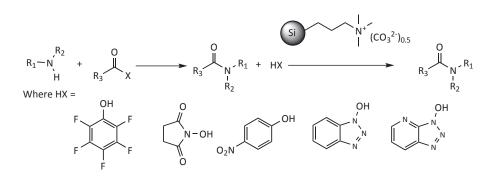
118

1.5 eq excess over acyl chloride

Scavenging Undesired Compounds: Electrophile Scavengers (con't)

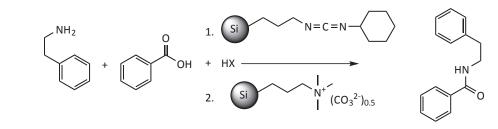
Electrophile	Scavenger			
Function to be scavenged	Recommended Silia <i>Bond</i> scavenger	Loading (mmol/g)	Typical conditions	Solvent compatibility
	Silia <i>Bond</i> Amine	1.6	- Add 2 - 4 eq. of Silia <i>Bond</i> to the reaction mixture	All solvents
lsocyanates	Silia <i>MetS</i> Diamine	1.4	 Stir for 1 h at room temperature Filter off the scavenger and wash 	All solvents
	Silia <i>MetS</i> Triamine 1.2 Silia <i>MetS</i> Triamine		with solvent to afford isocyanate free	All solvents
				1
			 Add 2 - 4 eq. of SiliaBond to the reaction mixture 	
Anhydrides	Silia <i>Bond</i> Amine	1.6	- Stir for 1 h at room temperature	All solvents
			- Filter off the scavenger and wash with solvent to afford anhydride free solution	
		-	1	1
	Silia <i>Bond</i> Amine	1.6	- Add 2 - 4 eq. of Silia <i>Bond</i> to the reaction mixture	All solvents
Chloroformates	Silia <i>MetS</i> Diamine	1.4	- Stir for 1 h at room temperature	All solvents
	Silia <i>MetS</i> Triamine	1.2	 Filter off the scavenger and wash with solvent to afford chloroformate free solution 	All solvents

Scavenging Undesired Compounds: Nucleophile Scavengers


Nucleophile	Scavenger			
Function to be scavenged	Recommended Silia <i>Bond</i> scavenger	Loading (mmol/g)	Typical conditions	Solvent compatibility
	Silia <i>Bond</i> Amine	1.6		All solvents
	Silia <i>MetS</i> Diamine	1.4	 Add 2 - 4 eq. of Silia<i>Bond</i> to the reaction mixture Stir for 1 h at room temperature Filter off the scavenger and wash with solvent to afford acid free solution 	All solvents
Acids or acidic phenols	Silia <i>MetS</i> Triamine	1.2		All solvents
prieriois	Silia <i>Bond</i> Carbonate	0.7		Organic solvents
	Silia <i>Bond</i> TBD	0.9		All solvents

Amine free basing using SiliaBond Carbonate

Trifluoroacetic acid (*TFA*) is certainly the most commonly used ion-pairing agent for the separation of peptides in reversed-phase chromatography. The role of TFA is to act as a buffer, keeping the charge on the analyte and avoiding precipitation, to impart some hydrophobicity to the amino groups and to neutralize cationic charges. Silia*Bond* Carbonate is an efficient and convenient solution to this problem. See page 180 of this catalog for more details.


Scavenging phenols and acids with SiliaBond Carbonate

The efficiency of Silia*Bond* Carbonate as a scavenger of various coupling reagents (HX), including pentafluorophenol, N-hydroxysuccinimide (HOSu *or* NHS), 4-nitrophenol, 1-hydroxybenzotriazole (HOBt), and 1-hydroxy-7-azabenzotriazole (HOAt) is shown below, as well as a comparison with 2 suppliers of polymer-supported carbonate.

Scavenging Phenols Results						
НХ	SiliaBond	Carbonate	Poly	mer 1	Polymer 2	
	5 min	60 min	5 min	60 min	5 min	60 min
Pentafluorophenol ¹	2	2	8	5	15	6
N-Hydroxysuccinimide	7	< 5	59	36	60	58
4-Nitrophenol	6	4	11	5	23	12
1-Hydroxybenzotriazole ²	12	4	32	8	74	4
1-Hydroxy-7-azabenzotriazole ²	3	3	28	4	70	8

Initial concentration: 5,000 ppm - 3 eq. of SiliaBond Carbonate. Analyzed by UV. ¹Analyzed by GC-MS, ² in THF

Amide Coupling Results				
НХ	Yield (%)	Purity (%)		
No Catalyst	35.4	95.1		
Hydroxysuccinimide ¹	67.2	98.0		
1-Hydroxybenzotriazole ²	98.9	97.7		
1-Hydroxy-7-azabenzotriazole ²	100	99.2		

1.0 eq. of amine, 1.5 eq. acid, 1.7 eq. catalyst (*HX*), 2.0 eq. Silia*Bond* Carbodiimide, 7.0 eq. Silia*Bond* Carbonate. Yield refers to the mass of isolated product. Purity was determined by GC-FID. ¹ in DCM, ² in THF

Related publication

P. Wipf at al., Tetrahedron, 61, 2005, 11488.

- B. Desai at al., *Tetrahedron, 62, 2006*, 4651.
- S. Mao et al., J. Comb. Chem., 10, 2008, 235.
- T. Emmerich et al., Bioorg. Med. Chem. lett., 20, 2010, 232.
- D. R. Saueur at al., Org. Lett., 5, 2003, 4721.
- S. Werner at al., J. Comb. Chem., 9, 2007, 677.

6

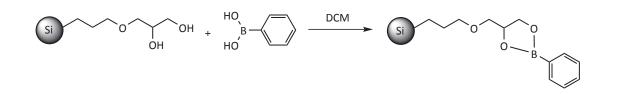
Scavenging Undesired Compounds: Nucleophile Scavengers (con't)

Nucleophile Sca	avenger				
Function to be scavenged	Recommended Silia <i>Bond</i> scavenger	Loading (mmol/g)	Typical conditions	Solvent compatibility	
Alcohols	Silia <i>Bond</i> Tosyl Chloride	1.0	 Add 2 - 4 eq of Silia<i>Bond</i> to the reaction mixture Stir for 1 h at room temperature Filter off the scavenger and wash with solvent to remove alcohol from solution 	Anhydrous aprotic solvents and unstable in DMF	
All - 11-	Silia <i>Bond</i> Tosyl Chloride	1.0	- Add 2 - 4 eq of Silia <i>Bond</i> to the reaction mixture	Anhydrous aprotic solvents and unstable	
Alkoxides	Silia <i>Bond</i> Isocyanate	1.2	 Stir for 1 h at room temperature Filter off the scavenger and wash with solvent to obtain alkoxide-free solution 	in DMF Anhydrous aprotic organic solvents	
	Silia <i>Bond</i> Carboxylic Acid	1.4		All solvents	
	Silia <i>Bond</i> Tosic Acid	0.8	- Add 2 - 4 eq of Silia <i>Bond</i> to the reaction mixture	All solvents	
Amines (<i>primary,</i> secondary or anilines)	Silia <i>Bond</i> Propylsulfonic Acid	1.0	- Stir for 1 h at room temperature	Allsolvents	
	Silia <i>Bond</i> Isocyanate Silia <i>Bond</i> Tosyl Chloride	1.2 1.0	- Filter off the scavenger and wash with solvent to remove amine from solution	Anhydrous aprotic organic solvents	

Scavenging of amine with SiliaBond Isocyanate

Scavenging Amines Results					
Scavenger	Benzylamine	Aniline			
Silia <i>Bond</i> Isocyanate	98.7	94.4			
Polymer 1	100	98.9			
Polymer 2	100	99.2			

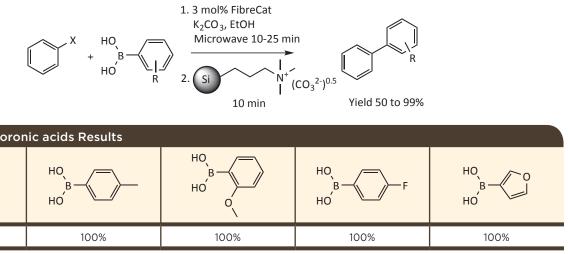
Conditions: 3 eq. relative to amine, 1 h at room temperature in DCE % scavenged determined by GC-MS


Scavenging of benzylamines with SiliaBond Isocyanate in different solvents

Scavenging Benzylamine Results				
Scavenger	THF	DCM	ACN	
Silia <mark>Bond</mark> Isocyanate	> 98%	> 98%	95%	
Polymer 1	> 98%	> 98%	79%	
Polymer 2	> 98%	> 98%	88%	

Conditions: 3 eq. relative to amine, 1 h at room temperature % scavenged determined by GC-MS

Scavenging boronic acids with SiliaBond Diol


Scavenging Boronic acids Results				
Equivalent	Time	Efficiency		
2	1 h	75%		
4	1 h	100%		

Conditions: 2-4 eq. relative to boronic acid, 1 h at room temperature % scavenged determined by GC-MS

Scavenging boronic acids with SiliaBond Carbonate

Related publication

Y. Wang and D. R. Sauer, Org. Lett., 6, 2004, 2793.

Scavenging Boronic acids Results					
Equivalent	но в но	но _{, е} но			
10	100%				

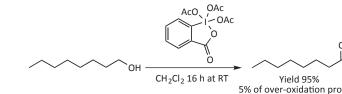
		,
ng I/g)	Typical conditions	Solvent compatibility
	 Add 2-4 eq of Silia<i>Bond</i> to the reaction mixture 	Organic solvents
	- Stir for 1 h at room temperature	All solvents
	 Filter off the scavenger and wash with solvent to yield boronic acid-free solution 	All solvents

Scavenging Undesired Compounds: Nucleophile Scavengers (con't)

124

Nucleophile Scavenger					
Function to be scavenged	Recommended Silia <i>Bond</i> scavenger	Loading (mmol/g)	Typical conditions	Solvent compatibility	
Hydrazines	Silia <i>Bond</i> Tosyl Chloride	1.0	 Add 2 - 4 eq. of Silia<i>Bond</i> to the reaction mixture Stir for 1 h at room temperature Filter off the scavenger and wash with solvent to remove hydrazine from solution 	Anhydrous aprotic solvents Unstable in DMF	
Organometallics	Silia <i>Bond</i> Tosyl Chloride	1.0	 Add 2 - 4 eq. of Silia<i>Bond</i> to the reaction mixture Stir for 1 h at room temperature Filter off the scavenger and wash with solvent to obtain organometallic-free solution 	Anhydrous aprotic solvents Unstable in DMF	
	Silia <i>Bond</i> Isocyanate	1.2	- Add 2 - 4 eq. of Silia <i>Bond</i> to the reaction mixture	Anhydrous aprotic organic solvents	
Thiol or thiolates	Silia <i>Bond</i> Maleimide (<i>thiol</i>)	0.7	 Stir for 1 h at room temperature Filter off the scavenger and wash with solvent to yield thiol-free solution 	Polar solvents (<i>DMF,</i> <i>MeOH and</i> H ₂ O)	

Catch and Release of the API

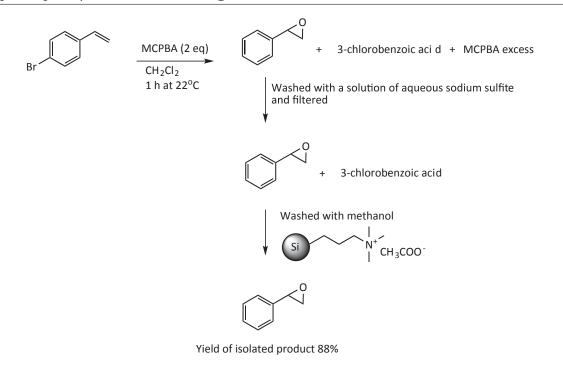

Catch and Release the API					
Function to be isolated	Recommended Silia <i>Bond</i> scavenger	Loading (mmol/g)	Typical conditions		
Amines	Silia <i>Bond</i> Tosic Acid (<i>SCX</i>)	0.8	- Catch the amine on the Silia <i>Bond</i>		
	Silia <i>Bond</i> Propylsulfonic acid (<i>SCX-2</i>)	1.0	 Wash with methanol Release with a solution of 2 M NH₃ in methanol 		
	1	1			
Carboxylic acids	Silia <i>Bond</i> TMA Acetate (<i>SAX-2</i>)	1.0	 Catch the carboxylic acid on the Silia<i>Bond</i> Wash with methanol Release with 2% AcOH in MeOH or 1% HCl in ACN 		

Scavenging 2-Iodobenzoic Acid using SiliaBond TMA Acetate and Carbonate

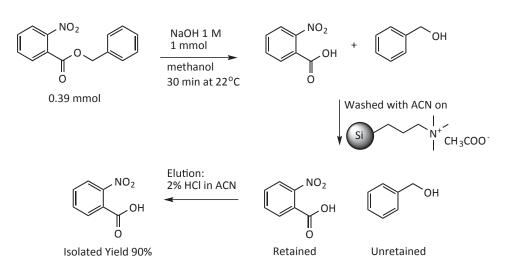
Dess Martin Periodinane (DMP) is a mild and chemoselective oxidant. It is readly accessible, environmentally benign and has a good shelf-life. Further, the ease of handling, simple reaction work-up, product purification and good yields obtained with DMP make it a valuable reagent in

Scavenging was done using Silia*Bond* TMA Acetate organic synthesis. or Carbonate, both in bulk (1g) and SPE cartridge (6 2-lodobenzoic acid is the degradation product from mL/1 g) for comparison purposes. Each sample was DMP formed during the work-up. Most of it can be washed or eluted with a fresh portion of MTBE (8 mL) removed with a basic work-up, but sometimes, it can and then the 2-iodobenzoic acid was monitored by be difficult to get rid of all this side product. GC-MS against an internal standard. Over-oxidation product (carboxylic acid) was scavenged with **General Procedure** SiliaBond scavengers.

A solution of 1-octanol (1 mmol) in CH₂Cl₂ (6 mL) at ¹The usual NaHCO₂ wash was intentionally omitted in order room temperature, was added to DMP (1.1 mmol). The to get significant amount of residual 2-iodobenzoic acid in reaction mixture was stirred for 16 h. then diluted with the final solution. 35 mL of MTBE and poured in 20 mL of an aqueous


- 1	-	-
_ 1		5
		~
	_	-

solution of $Na_2S_2O_3$ (25%). The mixture was stirred for 10 min. Another portion of 35 mL of MTBE was added for the liquid-liquid extraction. The MTBE phase was then washed with water¹ and a saturated aqueous solution of NaCl (10 mL) and dried on MgSO₄.


	Scavenging 2-lodobenzoic acid Results (%)						
D	Sorbent	Bulk	Silia <i>Prep</i>				
Ļ	Silia <i>Bond</i> TMA Acetate	100	100				
duct	Silia <mark>Bond</mark> Carbonate	100	100				

Catch and Release of the API (con't)

Ester hydrolysis purification using SiliaBond TMA Acetate

Ester hydrolysis purification using SiliaBond TMA Acetate



SiliaBond Ordering Information

Scavenger	Part Number	Available Quantity
Silia <i>Bond</i> Amine	R52030B	
Silia <i>Bond</i> Carbonate	R66030B	_
Silia <i>Bond</i> Carboxylic Acid	R70030B	_ 5 g
Silia <i>MetS</i> Diamine	R49030B	10 g
Silia <i>Bond</i> Diol	R35030B	25 g
Silia <i>Bond</i> DMAP	R75530B	50 g
Silia <i>Bond</i> Isocyanate	R50030B	100 g 250 g
Silia <i>Bond</i> Maleimide	R71030B	500 g
Silia <i>Bond</i> Piperazine	R60030B	1 kg
Silia <i>Bond</i> Propylsulfonic Acid	R51230B	5 kg
Silia <i>Bond</i> TBD	R68530B	10 kg
Silia <i>Bond</i> TMA Acetate	R66430B	
Silia <i>Bond</i> Tosic Acid	R60530B	Multi-Ton
Silia <i>Bond</i> Tosyl Chloride	R44030B	Call us for details
Silia <i>Bond</i> Tosyl Hydrazine	R61030B	
Silia <i>MetS</i> Triamine	R48030B	

126

Silia*Flash*® Irregular Silica Gels

Chromatography at SiliCycle

SiliCycle is your partner of choice for your purification and chromatography needs.

- Recognized worldwide as a leader with an outstanding quality silica gel, SiliCycle offers one of the largest selections of silica, available in different shapes, on the market.
- SiliaFlash[®] Irregular silica
- IMPAQ[®] Angular silica
- SiliaSphere[™] Spherical silica

Ensure Unbeatable Performance with SiliCycle.

UltraPure Silica Gel from SiliCycle

SiliCycle: Silica expert.

With pore diameters ranging from 40 to 150 Å and particle sizes from 5 to 1,000 microns, SiliCycle offers products to meet all your application requirements. This is one of the most reliable portfolios for flash

and gravity grades for medium to high pressure.Our silica gels are ideal for both analytical and preparative chromatography, from laboratory to pilot-plant processes and production scales.

Features & Benefits of Silia <i>Flash</i> , IMPAQ & Silia <i>Sphere</i>					
Features	Benefits				
High purity silica gels	Consistency, reliability, reproducibility				
Exempt of fine particles or very low level of fines	No contamination, lower backpressure, superior separation				
Exceptional narrow particle and pore-size distribution	Optimal separation and resolution				
Batch-to-batch, year-to-year consistency	Reliable chromatography				
Neutral pH	Wide range of products can be purified, even acid sensitive ones				
Low metal content & controlled water content	Symmetrical peaks with no tailing				
High mechanical stability	Can be used under high pressures without surface abrasion				
High surface area and density	Greater loading capacity, enabling more silica for the same volume Solvent economy (<i>smaller dead volume</i>)				
Availability in bulk quantities at affordable pricing	Always in stock with on-time delivery				

Together, all these benefits mean optimal and reproducible separation power, saving you time and money.

Silia*Flash* Irregular Silica Gels

- Consistency, Reliability, & Reproducibility*
- Tight Particle and Pore Size Distributions

The quality of a silica gel is extremely important when you are using it for chromatography purposes, particularly when dealing with difficult separations of valuable compounds. You need to be extremely confident about your recoveries.

SiliCycle is recognized worldwide as a leader in chromatography and purification with our outstanding quality products. SiliCycle's expertise and strong knowledge has been acquired over the years and this distinguishes us from the competition.

Note: characteristics listed on following pages can also be applied to IMPAQ & SiliaSphere brands.

High Purity Silica Gel

You can be sure of the outstanding quality of SiliCycle's silica gels because of the closely controlled manufacturing conditions at our ISO 9001:2008 certified state-of-the-art facilities. Our tight control of every manufacturing process step, affords identical and reproducible properties (chemical, physical and structural) as well as ensuring the same chromatographic selectivities. Hence, Silia*Flash* is suitable for validated chromatographic processes.

Furthermore, our stringent Quality Control and Quality Assurance ensures high performance with no scale-up limitations. Every product meets our guality specifications and is shipped with a Certificate of Analysis (CofA). Individual data sheets are also available directly from our website.

SiliaFlash - Now Exempt of Fines*

Over the years, in our quest to improve and provide the best quality products, SiliCycle has continuously reviewed how it can make a difference for you. At SiliCycle, a major improvement on our most popular silica gel (SiliaFlash 40-63 microns, 60 Å) has been the absence of fines (small particles under 10 microns).

• This improvement comes with NO EXTRA COST to you.

*Other SiliaFlash products have the lowest level of fines on the market.

e	In chromatography, fine particles increase
У	backpressure and can result in clogging which is
	particularly dangerous when using glass columns.
r	Fines can also pass through filters and contaminate
	final products. The lack of fines gives a more regular,
	stable, and reproducible chromatography bed and a
	faster and more even flow rate for better separation.

Silia*Flash*'s Exceptional Characteristics

Tight Particle and Pore Size Distributions

The importance of the particle and pore size distribution varies depending on the type of chromatography being done. For instance, it is very important when using HPLC that the particle size distribution of the spherical particles being used be very narrow.

132

Importance of tight distributions in chromatography				
Tight particle size distribution	Tight pore size distribution			
Greater column performance and separation	Optimal peak shape - Presence of smaller pore size leads to peak tailing			
Tighter peaks and better peak shape	surface area - Presence of bigger pore size leads to lower surface availability			
Better column packing, easier to pack	No molecule sequestration due to fluid diffusion inside pores			
No preferential pathways (channeling)				
Faster flow rate with lower back-pressure				
Time and solvent savings				

Scanning Electron Microscopy (SEM) Comparison of Two Silica Gels 40 - 63 µm, 60 Å

SiliCycle

Particle Size Analysis Methods

Laser Diffraction (Malvern Analysis)

Usually used for particle sizes below 40 microns. Particle size distributions are reported in term of D10, D50 (average, mean) and D90. Some manufacturers also mention the ratio of D90/D10.

Sieving

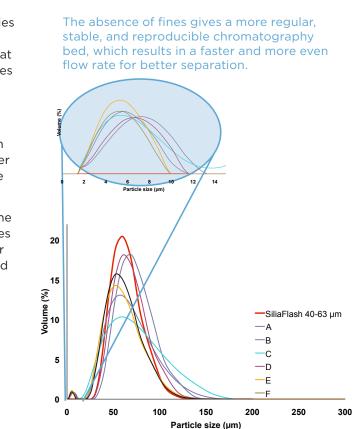
Usually for particle sizes over 40 microns. Particle size distribution is reported in percentage of undersized and oversized.

Tighter Particle Size Distribution

The importance of the particle size distribution varies depending on the type of chromatography being done. For instance, it is very important for HPLC that the particle size distribution of the spherical particles being used be very narrow.

When selecting a silica gel, chemists need to take into account that not all 40-63 µm gels are the same. The figure on the right shows the distribution curves of SiliCycle's Silia*Flash* gel compared to other manufacturers of flash silica gels. All products were sold as 40-63 µm gels.

The two key points of the graph are the height of the volume differential (diff) and percentage of particles below 40 $\mu m.$ The SiliCycle curve has a much higher percentage of particles between 40-63 microns and a very low level of particles below 40 microns (or "fines"). Fines can cause several problems such as higher backpressure, clogging, contamination (see previous section for more details). SiliCycle has the lowest level of fines on the market.


Effects of Homogeneous vs Uneven Packing

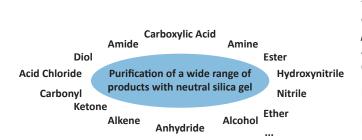
The figure to the right illustrates the effect of a wide particle size distribution versus a narrow one. Narrower particle size distribution gives a more homogenous packing and thus more concentrated fractions. And, by reducing solvent consumption, the process will be more cost-efficient.

Almost all silica gel manufacturers sell a form of 40-63 µm gel, but not all gels are equal. SiliCycle's Silia*Flash* gels have a mean of 90% of the particles in the nominal range compared with 80% for most of the competitors. The connection between particle size distribution and column performance is very simple. When the distribution is broad, the packing is uneven. Some parts are composed of only large particles where the solvent will flow fast and meet little resistance, and there are sections composed of small particles where the solvent flows slowly and meets great resistance. As a result, the solvent will take the path of least resistance through the column and flow around the pockets of small particles instead of straight through the column. This uneven flow greatly affects the separation because the compounds will have different retention times depending on their flow path. As they exit the column, the compounds will give broad and poorly separated peaks.

Silia*Flash*® Irregular Silica Gels

Low Trace Metal Content

Irregular silica, depending on its method of manufacturing, normally contains trace quantities of a variety of metals. This can, in turn, affect the quality of the separation. Aluminum, iron and lead are particularly problematic because they cause peak tailing. SiliCycle's proprietary technology generates a silica gel with the lowest trace metal content on the market today.


As shown in the table below, trace metal concentration in SiliCycle's silica gel is significantly lower than flash silica gels from other manufacturers. Our low trace metal content ensures you will get optimal performance from your chromatography. Tight control of trace metals in every batch also improves your reproducibility and reduces risks of interaction between metals and desired compounds.

Typical Trace Metal Concentration							
Metals	SiliCycle	Manuf. A	Manuf. B	Metals	SiliCycle	Manuf. A	Manuf. B
Aluminum (Al)	33	262	280	Magnesium (Mg)	61	149	104
Barium (Ba)	9.4	59.7	32.5	Nickel (Ni)	0.4	0.5	0.5
Clacium (Ca)	336	1150	502	Silver (Ag)	0.09	0.29	0.19
Chromium (Cr)	0.5	0.6	0.4	Sodium (Na)	466	945	585
Copper (Cu)	0.2	0.2	0.2	Tin (Sn)	0.2	0.2	0.1
Iron (Fe)	32	75	41	Titanium (Ti)	147	250	179
Lead (Pb)	0.41	5.24	0.95	Zirconium (Zr)	32	75	56

Stable Water Level Content

Water level of silica gel affects the selectivity of the silica. SiliaFlash has a water content between 4 to 6%. This is advantageous for you since the other products have a water variation from 2 to 9% depending on the manufacturer. SiliCycle can also adjust the water level upon request.

Neutral pH & High Surface Area

Neutral pH

Our Silia*Flash* are pH-adjusted between 6.5 and 7.5 to be safely used in the separation of a wide range of products (a neutral pH is needed to separate *pH-sensitive compounds*). Once again, this is advantageous when compared to the pH range of 6 to 7 often seen in the market.

High Surface Area

Higher surface area provides greater separation power.

SiliCycle, the Silica Supplier for Every Need

With SiliCycle, No Scale-up Limitations

Each year, SiliCycle manufactures hundreds of tons of Silia*Flash*, a broad range of silica gels for chromatography applications. All our products are manufactured under tightly controlled manufacturing processes, and stringent quality control insured the highest quality.

Scaling-up from laboratory to production scale

SiliCycle Has One of the Largest Selections Available

SiliCycle offers one of the largest selections of silicarequirements. based products, from bare to various functionalized silicas, required for chromatography.

These products are available in different pore diameters (from 40 to 1,000 Å), particle sizes (from 5 to 1,000 μm) and particle shape (irregular, angular or spherical) to provide a solution for a wide range of applications, performance and economic

Be confident in scaling-up your processes with our Silia*Flash*. Performance will remain the same with every particle size.

- All of these products are available from laboratory scale to multi-ton quantities.
- Silia*Flash* is also available in fixed bed format: SiliaSep Flash Cartridges (see page 158) & SiliaPrep SPE cartridges (see page 173).

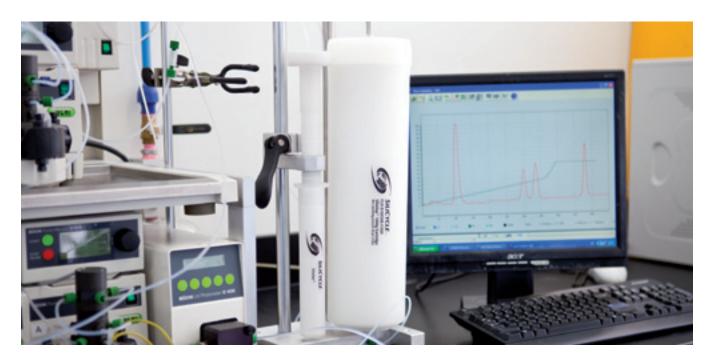
Silia Flash Ordering Information

Silia <i>Flash</i> Ordering Information						
Product Number	Name	Particle Size (µm)	Pore Diameter (Å)			
R10030A	F40	40 - 63	40			
R10040A	G40	60 - 200	40			
R10070A	B40	200 - 500	40			
R10010B	C60	0 - 20	60			
R10013B	160	15 - 25	60			
R10014B	A60	5 - 20	60			
R10015B	S60	15 - 35	60			
R10017B	E60	15 - 40	60			
R10019B	D60	10 - 30	60			
R10023B	R60	20 - 45	60			
R10030B	F60	40 - 63	60			
R12030B	P60	40 - 63	60			
R10040B	G60	60 - 200	60			
R10050B	M60	60 - 120	60			
R10060B	L60	120 - 200	60			
R10070B	B60	200 - 500	60			
R10080B	N60	500 - 1,000	60			
R10015D	S90	15 - 35	90			
R10030D	F90	40 - 63	90			
R10040D	G90	60 - 200	90			
R10070D	B90	200 - 500	90			
R10040H	G150	60 - 200	150			
R10050H	M150	60 - 120	150			
R10060H	L150	120 - 200	150			
R10072H	B150	250 - 500	150			

pH (5% w/w): 6.5 - 7.5, Volatile content: ≤ 7 Formats : 1kg, 5kg, 10kg, 25kg, ... up to multi-ton scale

Tip: Silica gel standardization is possible by eliminating the residual moisture. Place the silica inside a vacuum oven and heat at 130 °C during 30 minutes. Cool to room temperature and pack column.

Particle Size Conversion Table


	Conversion Table Microns vs Mesh								
Microns		Mesh	Microns	Mesh					
	5 - 20	625 - 2500	60 - 120	120 - 230					
	15 - 25	~ 325 - 625	60 - 200	70 - 230					
	15 - 40	~ 400 - 1,250	120 - 200	70 - 120					
	20 - 45	325 - 625	200 - 500	35 - 70					
	40 - 63	230 - 400	500 - 1,000	18 - 35					

SILICYCLE (

Silia*Flash*® Irregular Silica Gels

A Particle Size for Each Application

Most Popular Particle Size	Applications			
Particle Size Distribution				
Particles for Preparative TLC Plates				
0 - 20 μm 5 - 15 μm 5 - 20 μm	 Contain neither binder Can also be used in flas 			
Specialized Particles for Difficult Sepa	rations			
15 - 35 μm 15 - 40 μm	• High-resolution silica fo			
Particles for Flash Chromatography				
40 - 63 µm	 Chromatography types preparative chromatog Narrow particle size ov Easier to pack More uniform packing Superior resolution Suitable for uses with c 			
60 - 120 µm	• Alternative to 40-63 µr			
Particles for Column (or Gravity) Chro	matography			
60 - 200 µm	 Most economical silica Suitable for rough puri Easier to handle Purification cost reduction 			
120 - 200 μm	 Silica for standard oper Narrow particle size en Suitable for mass overl 			

136

Application

(organic or inorganic) nor UV indicator (*F254*) ash chromatography if higher resolution is required (*higher back-pressure*)

for difficult separations (*similar polarities*)

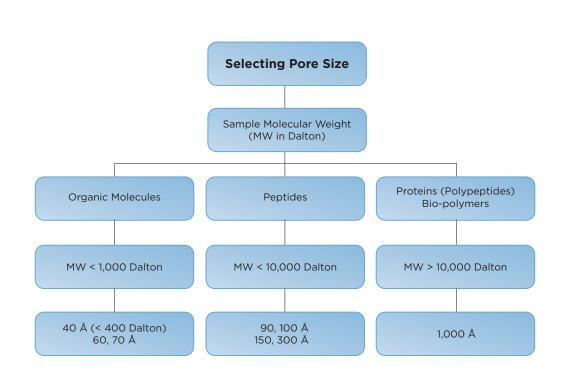
es: high-resolution flash chromatography & low to medium-pressure graphy over other flash chromatography silica ULAR PARTIC

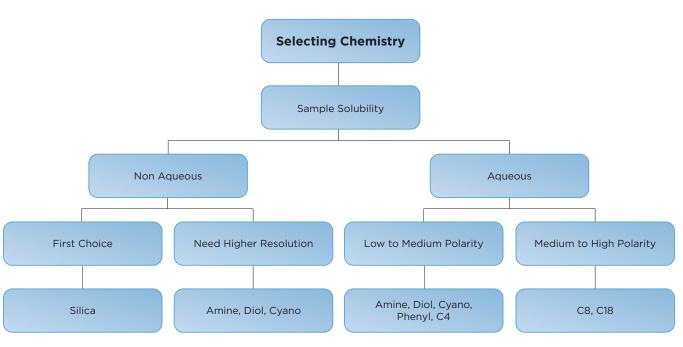
complex matrices

µm silica for faster flow rate without pressure

for open column chromatography (*gravity*) ification and large-scale preparative chromatography

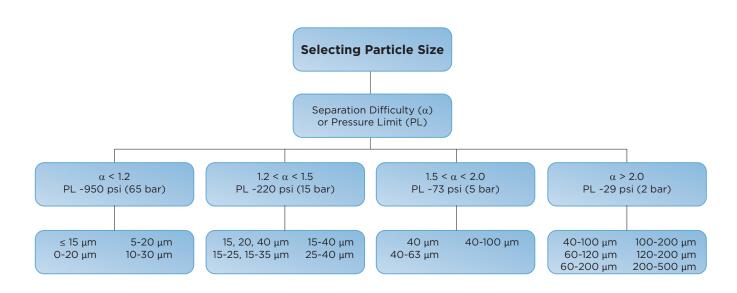
tion


en column chromatography nables uniform packing rload purification


Silica Selection Guide

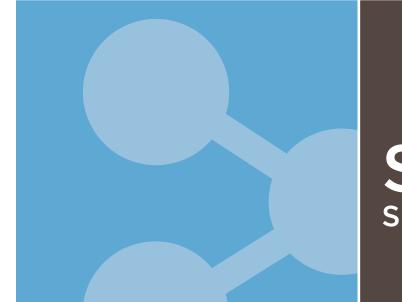
SiliCycle offers a wide range of Silia*Flash*, Silia*Sphere* and IMPAQ products to cover many types of applications. Selecting the most appropriate sorbent for any given application can be difficult. To help you choose the right media (*bonded or not*), our experts recommend using the diagram below as a guide. Simply follow the three pathways to select the most suitable sorbent.

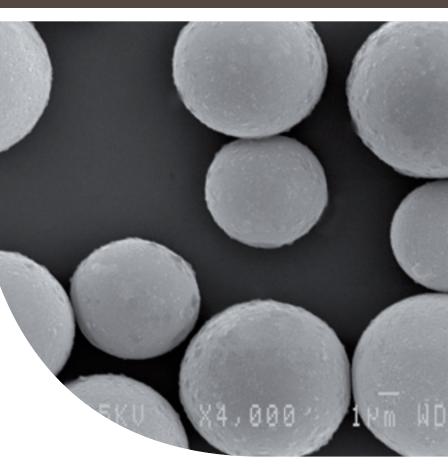
Selecting Pore Size



Selecting Chemistry

Note: Standard functionalized sorbents are 40-63 µm, 60 Å

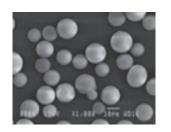

Selecting Particle Size

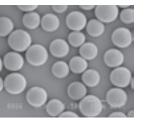


138

Silia*Flash*® Irregular Silica Gels

Spherical Silica Gels




SiliaSphere Spherical Silica Gel

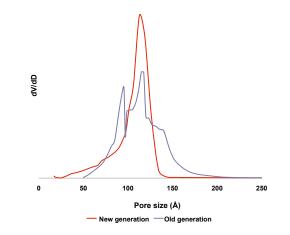
SiliCycle is your partner of choice for your purification and chromatography needs.

- SiliCycle has improved large-scale production of its SiliaSphere spherical silica support. You will be happy to see that the quality is superior due to a narrower particle size distribution.
- SiliaSphere spherical silica gels present great advantages for your preparative chromatography applications.

142

Old version S10007G

New version S10007G-A


SEM picture of 10 μm

SiliaSphere Monodispersed Spherical Silica Gels

Our SiliaSphere family of silicas are monodispersed spherical silica gels with particle sizes from 1.8 to 15 μ m. The 1.8, 2.2, 3, and 5 μ m gels are used in analytical scale chromatography. The 10 and 15 μ m gels are used in preparative chromatography. Available in 60, 80, 100, 120 and 300 Å pore sizes.

Our Silia*Sphere* are characterized by low metal content to avoid specific interaction between acid sites and analytes as well as high mechanical stability and very high purity.

The Silia*Sphere* are manufactured from an organic form of silicon (alkoxydes). This ensures very low metal content as the starting material is purified by distillation. Deionized water is used to hydrolyze the silicon alkoxydes. Careful monitoring and control of the parameters that induce preciitation afford spherical silica gels with the desired characteristics.

SiliaSphere Product Overview

Silia <i>Sphere</i> Mono	dispersed Spherical S	ilica Gels		
Product Number	Particle Size (μm) D50	Pore Diameter (Å)	Pore Volume (mL/g) / Spec. Surf. Area (m²/g)	BONDED C18 mono Product Number
BARE Silia <i>Sphere</i> Monod	spersed Spherical Silica			C18 mono
S10007B-A	10	60	0.85 - 1.15 / ≥ 600	S03207B-A
S10008B-A	15	60	0.85 - 1.15 / ≥ 600	S03208B-A
S10003F-A	3	80	0.85 - 1.15 / ≥ 450	S03203F-A
S10005F-A	5	80	0.85 - 1.15 / ≥ 450	S03205F-A
S10007F-A	10	80	0.85 - 1.15 / ≥ 450	S03207F-A
S10008F-A	15	80	0.85 - 1.15 / ≥ 450	S03208F-A
S10003E-A	3	100	0.85 - 1.15 / ≥ 400	S03203E-A
S10005E-A	5	100	0.85 - 1.15 / ≥ 400	S03205E-A
S10007E-A	10	100	0.85 - 1.15 / ≥ 400	S03207E-A
S10008E-A	15	100	0.85 - 1.15 / ≥ 400	S03208E-A
S10001G-A	1.8	120	0.85 - 1.15 / ≥ 300	S03201G-A
S10002G-A	2.2	120	0.85 - 1.15 / ≥ 300	S03202G-A
S10003G-A	3	120	0.85 - 1.15 / ≥ 300	S03203G-A
S10005G-A	5	120	0.85 - 1.15 / ≥ 300	S03205G-A
S10007G-A	10	120	0.85 - 1.15 / ≥ 300	S03207G-A
S10008G-A	15	120	0.85 - 1.15 / ≥ 300	S03208G-A
S10003M	3	300	0.75 - 1.05 / ≥ 80	S03203M
S10005M	5	300	0.75 - 1.05 / ≥ 80	S03205M
S10007M	10	300	0.75 - 1.05 / ≥ 80	S03207M
S10008M	15	300	0.75 - 1.05 / ≥ 80	S03208M
S10007T	10	1,000	0.75 - 1.05 / ≥ 20	S03207T
S10008T	15	1,000	0.75 - 1.05 / ≥ 20	S03208T

pH (5% w/w): 4 - 7, Volatile content: ≤ 10

Formats : 100g, 500g, 1kg, 5kg, 10kg, 25kg, ... up to multi-ton scale

The SiliaSphere family is characterized by a very low metal content and exceptionally stable at the low or high pH. The SiliaSphere manufacturing process ensures quality and reproducibility in pore size, surface area and particles sizes and morphology. The high specific surface area enables a high loading capacity with a uniform and reproducible coverage.

Please note that we are able to provide all our functionalized products (C18, C8, amine, cyano, diol, etc.) on any spherical silica gel presented in this catalog. Contact us for details!

SILICYCLE

SiliaSphere PC (Preparative Chromatography)

Cost is very important in preparative and process chromatography, and the use of spherical particles with narrow particle size distribution is very expensive. It is possible in this case to use irregular or angular silica but the separation may not provide the desired results. For these situations, SiliCycle has developed a second class of spherical silica particles for preparative chromatography. The advantage of using Silia*Sphere* PC materials over standard silica gels includes the following:

- Increased efficiency of the eluent's flow characteristics
- Improvement of the resolution between compounds of a sample
- Ease of packing

Silia <i>Sphere</i> for Preparative Chromatography								
Product Number	Particle Size (μm) D50	Pore Diameter (Å)	Surface Area (m²/g)	Product Number	Particle Size (μm) D50	Pore Diameter (Å)	Surface Area (m²/g)	
S10030B-A	50	60	≥ 650	S10020M	30	300	≥ 100	
S10034B-A	75	60	≥ 650	S10030M	60	300	≥ 100	
S10040B-A	100	60	≥ 650	S10040M	100	300	≥ 100	
S10063B-A	150	60	≥ 650	S10020T	30	1,000	≥ 50	
S10030G-A	50	150	≥ 290	S10030T	60	1,000	≥ 50	
S10040G-A	100	150	≥ 290	S10040T	100	1,000	≥ 50	

Formats : 250g, 1kg, 5kg, 10kg, 25kg, ... up to multi-ton scale

IMPAQ Angular Silica Gels

The IMPAQ angular silica gels are a good alternative to spherical material for preparative applications as they provide very efficient separations at a much lower price. IMPAQ is premium-grade angular silica designed for preparative chromatography where consistent high purity and narrow particle distribution and pore dimension are required. IMPAQ is a porous silica gel in which the surface area, porosity and rigidity have been optimized for loading capacity and mechanical stability.

IMPAQ for Preparative Chromatography								
Product Number	Particle Size Di D50	stribution (μm) D10/D90	Pore Diameter (Å)	Pore Volume (mL/g)	Spec. Surface Area (m²/g)	рН (5% w/w)		
B10007B	10 µm	≤ 1.8	60	0.70 - 0.85	≥ 450	≥ 4		
B10009B	20 µm	≤ 1.8	60	0.70 - 0.85	≥ 450	≥ 4		
B10025B	40 µm	≤ 2.1	60	0.70 - 0.85	≥ 450	≥ 4		
B10007E	10 µm	≤ 1.8	100	1.0 - 1.4	≥ 400	≥ 6		
B10009E	20 µm	≤ 1.8	100	1.0 - 1.4	≥ 400	≥ 6		
B10025E	40 µm	≤ 2.1	100	1.0 - 1.4	≥ 400	≥ 6		

Formats : 100g, 1kg, 5kg, 10kg, 25kg, ... up to multi-ton scale

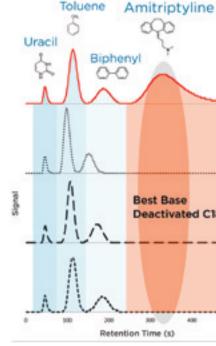
Silia Bond[®] Chromatographic and Ion Exchange Phases

SiliaBond Chromatographic and **Ion Exchange Phases**

SiliCycle offers a large range of silica-based chromatographic and ion exchange phases:

- Non Polar SiliaBond Phases: C1 to C18
- Polar SiliaBond Phases: Amine, Cyano and Diol
- Ion Exchange SiliaBond Phases: SCX, SCX-2, WCX, SAX, SAX-2 and WAX

SiliaBond Chromatographic Phases


Silica is the most widely used matrix in chromatography. These bare and grafted supports possess great properties for use as stationary phases and are particularly appreciated for their high mechanical resistance. In chromatography, there are two phases: the stationary phase that is packed in a column and the mobile phase that will be eluted through the stationary phase. If the analyte is strongly soluble in the mobile

phase, there will be no retention. If the analyte interacts strongly with the stationary phase, there will be no or low migration. In a mixture, the interactions between the two phases will generate the separation. So, depending on the analyte's polarity, the apropriate stationary phase has to be chosen, and the mobile phase's polarity has to be tuned.

SiliaBond Reversed-Phases

In reversed-phase chromatography, the packing material is always non-polar (hydrophobic) while the mobile phase is polar to non-polar. An important parameter affecting chromatographic efficiency is the hydrophobicity of the sorbent. As a general rule, stationary phase hydrophobicity increases with the alkyl chain length.

Last year, SiliCycle developed a new and innovative C18 chromatographic phase characterized by a homogeneous coverage of the alkyl chains on the surface. Consequently, the endcapping step is more controlled, which leads to much improved separations and also to inhibition of the non-specific interactions with silanol groups (highly deactivated silanol phase). This chromatographic phase is available on

surface. Also, the SiliaBond C18 presents lower back pressure compared to the competition.

146

	irregular (<i>R332-</i>) and spherical (<i>S032-</i>) high quality
e	supports. This grafting process will be available soon
	for all other reversed phases.

- Compared to competitive products, this endcapped 17% C18 exhibits high hydrophobicity and base deactivated properties. We have compared this new chromatographic phase to comparable 20% C18 phases on the market. The comparison was done on a mixture of compounds to evaluate the dead volume (*uracil*), the hydrophobicity (*toluene and biphenyl*) and the silanol activity (*amitriptyline*). The test was done in isocratic conditions, with a mobile phase composed of 8/20 methanol/buffer (20 nM potassium
- *phosphate pH = 7*). The results are presented below:

-	New SiliaBond C18 (bp=135 psi)
	Lower Back Pressure
	Competitor A (bp = 165 psi)
ed C18*	Competitor B (bp = 165 psi)
	Competitor C (bp = 158 psi)

The basic product, amitriptyline, interacts with residual silanol groups and stays immobilized on all the competitor phases, but not on the new SiliaBond C18. This new C18 phase presents a better separation property with a better endcapped

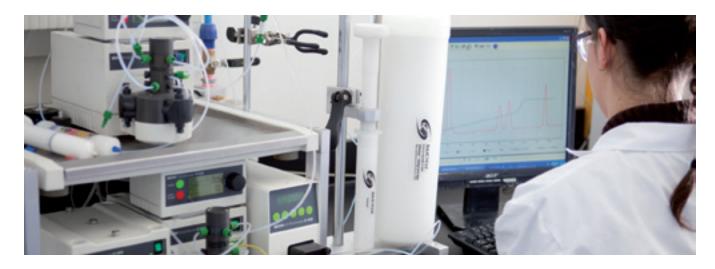
SiliaBond Reversed-Phases Portfolio

The table below presents all the reversed phases available from SiliCycle:

Silia <i>Bond</i> Reverse	ed-Phases				
Sorbent Phase	Functional Group	Endcapping	%C Loading ^a	Density (g/mL)	SiliCycle P/N
C18	Monofunctional C18	Yes	17.0	0.639	R33230B
C18 nec	Monofunctional C18	No	15.5	0.640	R33330B
C18 Low Loading	Monofunctional C18	Yes	11.0	0.619	R33530B
C18 High Loading	Trifunctional C18	Yes	23.0	0.864	R00030B
C18 High Loading nec	Trifunctional C18	No	23.0	0.867	R00130B
C18 Moderate Loading	Trifunctional C18	Yes	17.0	0.735	R02130B
C18 Low Loading	Trifunctional C18	Yes	11.0	0.705	R00430B
C12	Trifunctional Adamantyl	Yes	16.0	0.705	R53030B
C8	Monofunctional C8	Yes	11.0	N/A	R30830B
C8	Trifunctional C8	Yes	12.0	0.759	R31030B
C8 nec	Trifunctional C8	No	11.0	0.703	R31130B
C6	Trifunctional Cyclohexyl	Yes	10.0	0.662	R61530B
C4	Monofunctional C4	Yes	7-8.0	N/A	R32730B
C4	Trifunctional C4	Yes	8.0	0.656	R32030B
C4 nec	Trifunctional C4	No	8.0	0.692	R32130B
C1	Methyl	Yes	5.0	0.599	R33030B
CN	Trifunctional Cyano	Yes	7.0	0.703	R38030B
PHE	Monofunctional Phenyl	Yes	9.0	N/A	R33830B
PHE	Trifunctional Phenyl	Yes	9.0	0.637	R34030B
PHE nec	Trifunctional Phenyl	No	9.0	0.607	R34130B
PFP	Pentafluorophenyl	Yes	9.0	N/A	R67530B

Also available on all irregular Silia*Flash* Silica. Example: the 300 Å, 40-63 μm (*Rxxx30M*) ^aBased on our Standard Silia*Flash* Silica matrix R10030B, 40-63 μm, 60 Å

Typical applications using Silia <i>Bond</i> Reversed-Phases				
Sorbent Phase	Typical Applications			
C18	Peptides, pesticides, PCBs, PAHs, toxins, drugs & their metabolites in physiological fluids			
C8	Highly hydrophobic pesticides, peptides, heavy drugs and their metabolites in physiological fluids			
C6 (cyclohexyl)	Phenols, chloroanilines and anthelmintics from tissues and water			
C4	Molecules with large hydrophilic regions such as peptides, proteins and zwitterions (300 Å)			
C1	Polar and non-polar pharmaceutical natural products, highly hydrophobic molecules and biomolecules			
CN	Cyclosporine and carbohydrates			
PHE	Aflatoxins, caffeine, and phenols from water			
PFP	Conjugated compounds or for a new selectivity approach			


SiliaBond Normal Phases

Normal-phase chromatography is used to separate polar compounds through polar interactions with the support. The interactions take place on the highly polar silanols of the silica gel surface, but there are also moderately polar interactions with the hydrogen bonds on amino or diol functions. The non-endcapped cyano phase can be used in applications in normal-phase chromatography as a less polar alternative to silica. The AgNO₃ phase is particularly useful to separate isomers that present unsaturated groups.

Silia <i>Bond</i> Normal Phases						
Sorbent Phase	Functional Group	Endcapping	Loading ^a	Density (g/mL)	SiliCycle P/N	
SiO ₂	Bare silica gel	No	N/A		R10030B	
NH ₂ nec	Amine	No	1.6	0.687	R52130B	
CN nec	Cyano	No	1.0		R38130B	
Diol nec	Diol	No	1.0	0.687	R35030B	
AgNO ₃	Silver Nitrate	No	10% w/w	0.604	R23530B	

Also available on all irregular Silia*Flash* Silica. Example: the 300 Å, 40-63 μm (*Rxxx30M*) ^a Based on our Standard Silia*Flash* Silica matrix R10030B, 40-63 μm, 60 Å

Typical applications using SiliaBond Normal Ph				
Sorbent Phase	Typical Applications			
NH ₂ nec	Sugars, nucleotides and water-soluble v			
CN nec	Polar organic compounds such as basic			
Diol nec	Peptides, proteins and malto-oligosacch			
AgNO ₃	Cis/trans isomers of unsaturated compo			

148

ases

vitamins

c drugs and molecules containing π electron systems

harides

ounds such as alkenes, lipids, steroids and terpenes

SiliaBond Ion Exchange Phases

In an ion exchange process, the silica support is modified by a function carrying a charge with its counter ion. This counter ion is exchangeable with other ions in solution. If the immobilized phase is carrying an anion, the exchangeable species is a cation. Inversely, if the immobilized phase carries a cation, the ion exchangeable species will be an anion. Ion exchange phases are widely used in separation, purification and decontamination.

The stationary phase can be a cation exchanger of varying strength:

- Strong cation exchanger such as our SiliaBond Tosic Acid (SCX) and SiliaBond Propylsulfonic Acid (SCX-2)
- Weak cation exchanger such as our Silia*Bond* Carboxylic Acid (*WCX*)

The stationary phase can also be an anion exchanger of varying strength:

- Strong anion exchanger such as our SiliaBond TMA Chloride nec (SAX), SiliaBond TMA Acetate nec (SAX-2) and Silia*Bond* TBA Chloride
- Weak Anion exchanger such as our SiliaBond Amine nec (WAX) and SiliaBond Diethylamine nec (WAX-2)

SiliCycle has recently developed SiliaBond TMA Acetate, which has been particularly effective in customers' anionic exchange applications.

Silia <i>Bond</i> Ion Exchange Phases						
Sorbent Phase	Functional Group	Endcapping	Loading (mmol/g)ª	Density (g/mL)	SiliCycle P/N	
WAX	Amine	No	1.60	0.687	R52130B	
WAX-2	Diethylamine	No	1.20	0.761	R76630B	
SAX	Trimethylammonium Chloride	No	1.10	-	R66230B	
SAX-2	Trimethylammonium Acetate	No	0.70	0.707	R66430B	
TBA Chloride	Tributylammonium Chloride	No	0.50	0.656	R65530B	
SCX	Tosic Acid	No	0.80	-	R60430B	
SCX-2	Propylsulfonic Acid	No	1.00	0.642	R51430B	
WCX	Carboxylic Acid	No	1.40	6.682	R70130B	

Also available on all irregular Silia*Flash* Silica. Example: the 300 Å, 40-63 µm (*Rxxx30M*)

^a Based on our Standard Silia*Flash* Silica matrix R10030B, 40-63 μm, 60 Å

SiliaBond Ion Exchange Phases (con't)

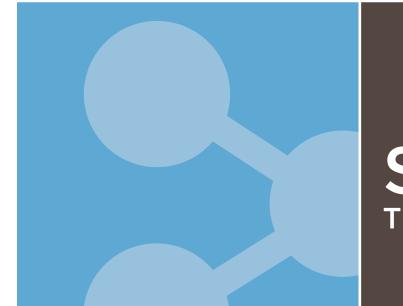
Typical applications for using SiliaBond Ion Exc					
Sorbent Phase	Typical Applications				
Silia <i>Bond</i> Amine (WAX)	A weak anion exchanger with pKa of facilitates the rapid release of very stre				
Silia <i>Bond</i> Diethylamine (<i>WAX-2</i>)	With a pKa of 10.5, this phase is prefe release purification of compounds be SAX in this case could make the relea not to say irreversible, due to the stro				
Silia <i>Bond</i> TMA Chloride (SAX)	The quaternary amine is permanently weak cations (<i>such as carboxylic acid</i>				
Silia <i>Bond</i> TMA Acetate (<i>SAX-2</i>)	The acetate counter ion is easily exch as carboxylic acids. This phase can be compounds or remove acidic impurit				
Silia <i>Bond</i> TBA Chloride	Silia <i>Bond</i> TBA Chloride may be used sterically hindered, which offers a dif				
Silia <i>Bond</i> Tosic Acid (SCX)	Due to the very low pKa (< 1) these charge throughout the pH scale. Th				
Silia <i>Bond</i> Propylsulfonic Acid (<i>SCX-2</i>)					
Silia <i>Bond</i> Carboxylic Acid (<i>WCX</i>)	At a pH of 6.8 or above, this weak cat for easier elution of strong cationic ar is commonly used for the extraction of cation exchangers.				

150

hange Phases

f 9.8. At pH 7.8 or below, the functional groups are positively charged. It rong anions such as sulfonic acids that may be retained irreversibly on SAX.

ered over the Silia*Bond* TMA Chloride (SAX) when performing catch and earing a permanent negative charge such as salts of sulfonic acids. Using ease of the compounds of interest difficult (but not necessarily impossible). ong interaction between the two strong ions.


ly charged (*pH independant*). It is commonly used for the extraction of ds) that may not bind strongly enough to weaker anion exchangers.

hangeable (so than the chloride ion) for compounds with pKa < 5, such be used in organic chemistry applications to selectively purify acidic ities from reaction mixtures.

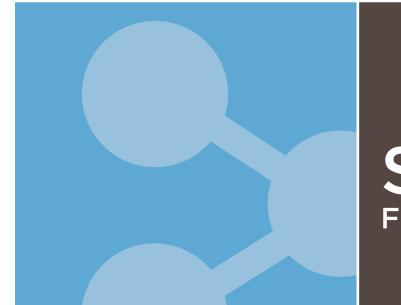
in the same applications as Silia*Bond* TMA Chloride. This phase is more fferent selectivity than other anion exchangers.

unctions are strong cation exchangers since they maintain a negative most common use is likely for catch and release purification.

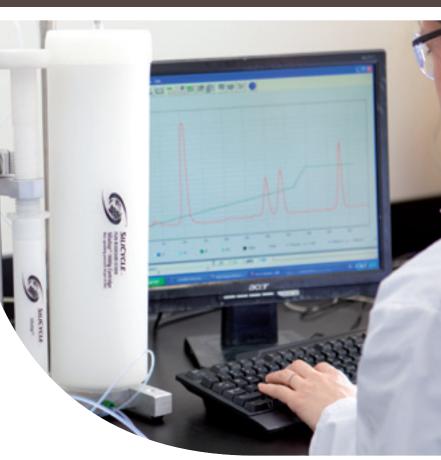
ation exchanger carries a negative charge. A pH of 2.8 or below is needed analytes that are neutralized only at extreme basic conditions. This phase of strong cationic species, which would be irreversibly retained on strong

SiliaPlate

UltraPure Silia*Plate*™ for TLC


SiliCycle offers the possibility to analyse reactions on thin layer chromatography (*TLC*) support and tranfers the experiment on flash columns on the same SiliaFlash silica support. Maximixe the benefits by using our UltraPure Silia*Plate* TLC plates with an extra hard layer of silica. For your convinience SiliCycle offers different sizes, choice of backing and reversed & speciality plates. All our Silia*Plate* TLC have an indicator (*F254*).

Oltrapure SiliaPlate II	C with different backing			
SiliCycle P/N	Product Name	Plate Size (cm)	Thickness (µm)	#/box
Silia <i>Plate</i> Al (<i>Aluminum</i>)				
TLA-R10011B-323	Silia <i>Plate</i> Al	20 x 20	200	25
Silia <i>Plate</i> Al C18				
TLA-R30411B-303	Silia <i>Plate</i> Al C18	20 x 20	200	25
Silia <i>Plate</i> G (<i>Glass</i>)				
TLG-R10011B-423	Silia <i>Plate</i> G	2.5 x 5	250	25
TLG-R10011B-124	Silia <i>Plate</i> G	2.5 x 7.5	250	100
TLG-R10011B-624	Silia <i>Plate</i> G	2.5 x 10	250	100
TLG-R10011B-527	Silia <i>Plate</i> G	5 x 10	250	200
TLG-R10011B-424	Silia <i>Plate</i> G	5 x 20	250	100
TLG-R10011B-723	Silia <i>Plate</i> G	10 x 20	250	25
TLG-R10011B-323	Silia <i>Plate</i> G	20 x 20	250	25
TLG-R10011B-333	Silia <i>Plate</i> G	20 x 20	500	25
Scored Silia <i>Plate</i> G (<i>Glass</i>)				
TLGSR10011B-423	Silia <i>Plate</i> G (scored)	20 x 20	250	25
TLGSR10011B-350	Silia <i>Plate</i> G (scored)	20 x 20	250	100
TLGSR10011B-353	Silia <i>Plate</i> G (scored)	20 x 20	250	25
SiliaPlate Prep (Glass Preparati	ve)			
TLG-R10011B-341	Silia <i>Plate</i> Prep	20 x 20	1000	25
TLG-R10011B-350	Silia <i>Plate</i> Prep	20 x 20	2000	12
TLG-R10011B-353	Silia <i>Plate</i> Prep	20 x 20	2000	25


UltraPure Silia <i>Plate</i> Fu	nctionalized TLC			
SiliCycle P/N	Product Name	Plate Size (cm)	Thickness (µm)	#/box
Silia <i>Plate</i> C18				
TLG-R30411B-213	Silia <i>Plate</i> C18	10 x 10	150	25
TLG-R30411B-303	Silia <i>Plate</i> C18	20 x 20	150	25
Silia <i>Plate</i> C18 Prep		·	· · · ·	
TLG-R30411B-341	Silia <i>Plate</i> C18 Prep	20 x 20	1000	25
Silia <i>Plate</i> C8				
TLG-R31030B-203	Silia <i>Plate</i> C8	10 x 10	150	25
TLG-R31030B-303	Silia <i>Plate</i> C8	20 x 20	150	25
Silia <i>Plate</i> C2				
TLG-R32611B-203	Silia <i>Plate</i> C2	10 x 10	150	25
TLG-R32611B-303	Silia <i>Plate</i> C2	20 x 20	150	25
Silia <i>Plate</i> NH ₂ (<i>Amine</i>)				
TLG-R52011B-203	Silia <i>Plate</i> NH ₂	10 x 10	150	25
TLG-R52011B-303	Silia <i>Plate</i> NH ₂	20 x 20	150	25
Silia <i>Plate</i> CN (<i>Cyano</i>)				
TLG-R38011B-203	Silia <i>Plate</i> CN	10 x 10	150	25
TLG-R38011B-303	Silia <i>Plate</i> CN	20 x 20	150	25
Silia <i>Plate</i> Diol				
TLG-R35011B-203	Silia <i>Plate</i> Diol	10 x 10	150	25
TLG-R35011B-303	Silia <i>Plate</i> Diol	20 x 20	150	25
SiliaPlate Ag (Silver Nitrate 10%)	impregnated)			
TLG-R23511B-423	Silia <i>Plate</i> Ag	10 x 10	150	25
TLG-R23511B-303	Silia <i>Plate</i> Ag	20 x 20	150	25

Silia*Plate*[™] TLC Plates

SiliaSep Flash Cartridges

SiliCycle SiliaSep[™] Flash Cartridges

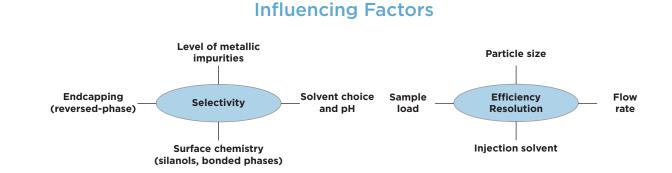
SiliCycle is the partner of choice for your flash cartridge needs.

- The use of pre-packed flash cartridges improves purification efficiency by offering superior reproducibility and productivity compared to conventional manual flash chromatography.
- Pre-packed cartridges offer to chromatographers:
- More tightly packed silica bed
- Homogeneous packing
- Better separation

SiliaSep Flash Cartridges

Today, various manufacturers offer pre-packed flash cartridges, but performance and quality varies. SiliCycle supplies pre-packed columns offered under the brand name of SiliaSep Flash Cartridges.

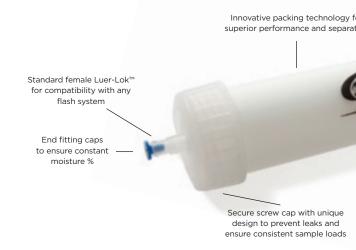
SiliaSep offers superior performances over competitive cartridges. They are available in two silica gel grades (40-63 & 15-40 microns) and with various functionalities (reversed & normal phases, ion exchangers and metal scavengers) to meet any purification demand.


Important Separation Parameters

Selectivity

Selectivity refers to the ability to retain or release certain types of compounds.

Efficiency & Resolution


The performance of flash cartridges can be measured by different parameters including plate count (N) and symmetry (SI). The higher (N), the better the separation.

SiliaSep Features & Benefits

*Speed, Reliability, & Selectivity, with SiliCycle's SiliaSep flash cartridges you will benefit from the same quality that all our products are known for. We have the best silica gel available on the market with no fines. Silia Sep offers:

Features	Benefits
Highest silica gel quality with no fines	No product contamination Homogeneous packing, no channelling (<i>no peak tailing</i>) High loading capacity (<i>high surface area</i>) Direct transfer from TLC to flash chromatography (same silica)
Innovative packing technology	Consistent packing for reproducible high plate count (<i>N</i>) Superior performance & separation Higher resolution with improved band definition (<i>no tailing</i>) Greater compound purity & higher recovery
Versatility	Wide choice of cartridge sizes from 4 grams up to 1.5 kg Coming soon: 2.5 kg cartridge Purification scale-up from milligram to hundreds of grams! Variety of sorbents to address any separation need
Reproducibility, reliability & safety	Leak-free guaranteed by unique one-piece cartridge design Reproducible performance from lot-to-lot (<i>stringent quality contro</i> Excellent durability to withstand high pressures Universal luer fittings for compatibility with any flash systems
Cost effective	Excellent ratio performance vs price Readily available from stock inventory for many volumes

Silia*Sep*[™] Flash Cartridges

Star
a for a

Unique one-piece polypropylene

Wide choice of cartridge sizes from 4 g to 1.5 Kg (purification scale-up from mg to hundreds of grams)

ndard male slip tip compatibility with ny flash system

CURED

cartridge for high pressure and solvent resistance

SiliaSep Portfolio Overview

SiliaSe	SORBENT: CONTACT US!			
Sorbent	Structure	Characteristics	Typical Applications	Storage Conditions (<i>Never dry out</i>)
Silica R10030B		Part. size: 40 - 63 µm	Most popular sorbent for day-to-day use for the purification of non-ionic polar organic compounds	Single use recommended.
Silica HP R10017B	SI OH	Part. size: 15 - 40 µm	High performance sorbent for difficult separations (<i>isomers</i>). Higher loading capacity. Faster flow rate. Less solvent used.	Single use recommended.
Amine R52030B	Si NH ₂	Part. size: 40 - 63 μm Endcapping: Yes %N: ≥ 1.68%	Good alternative for normal phase purification of compounds with basic properties, which would normally have to be purified by reversed phase. Note: imine formation can be seen with the purification of aldehydes and ketones.	Flush the cartridge 3x with - 80% acetonitrile in water
Diol R35030B	Сі ОТОН	Part. size: 40 - 63 μm Endcapping: Yes %C: ≥ 6.98%	Good alternative for difficult separation of low to medium polarity samples. Offers a better retention time compared to normal phase. Note: nucleophilic addition reactions can be seen with the purification of ketones and amines (1° and 2°).	Flush the cartridge 3x with - 80% acetonitrile in water
Cyano R38030B	Si	Part. size: 40 - 63 µm Endcapping: Yes %N: ≥ 1.93%	Versatile sorbent that can be used either as normal or reversed phase. Indicated for products with intermediate to extreme polarity. The slightly hydrophobic nature of the cyano group offers alternative selectivities.	Flush the cartridge 3x with - 80% methanol in water c - 80% acetonitrile in water
C18 R33230B	Si - C ₁₈	Part. size: 40 - 63 µm Endcapping: Yes %C: 17%	Indicated for the purification of medium to high polarity compounds, SiliaSep C18 are packed with the new generation of SiliaBond C18 monomeric reversed-phase. They provide reproducible purification without the complexity and cost of preparative HPLC.	Flush the cartridge 3x with - 80% methanol in water o - 80% acetonitrile in water

160

SiliaSep Sorbents for Ionic Compounds

Sorbent	Structure	Characteristics	Typical Applications (single use recommanded)
SCX-2 nec (propylsulfonic acid) R51230B	Сі С	Part. size: 40 - 63 µm Endcapping: No %S: ≥ 2.35% meq ≥ 0.63 mmol/g	Packed with the strong cation exchange silica SCX-2, the can be used to fully retain basic compounds for clean-u or to isolate them by a catch and release process.
SAX nec (TMA Chloride) R66530B		Part. size: 40 - 63 µm Endcapping: No %N: ≥ 1.42% meq ≥ 0.8 mmol/g	Packed with the strong anionic exchange silica SAX, the can be used to fully retain acidic compounds for clean- up or to isolate them by a catch and release process.
SAX-2 nec R66430B	Si N ⁺ I CH ₃ COO ⁻	Part. size: 40 - 63 µm Endcapping: No %N: ≥ 1.00% meq ≥ 0.5 mmol/g	Strong anion exchange sorbent with a low selectivity acetate counter ion retains more favorably acidic compounds with pKa's < 5, such as carboxylic acid.

SiliaSep Cartridge Types Overview

SiliaSep Ca	artridge	es Characteristics					Silia <i>Sep</i> Cartridges Characteristics								
Characteristics	Units	Silia <i>Sep</i> 4 g	Silia <i>Sep</i> 12 g	Silia <i>Sep</i> 25 g	Silia <i>Sep</i> 40 g	Silia <i>Sep</i> 80 g	Silia <i>Sep</i> 120 g	Silia <i>Sep</i> 220 g	Silia <i>Sep</i> 330 g	Silia <i>Sep</i> XL 800 g	Silia <i>Sep</i> XL 1600 g	Units	Characteristic		
Cartridge Code	-	ISO04	ISO12	ISO25	ISO40	ISO80	IS120	IS220	IS330	IS750	11500	-	Cartridge Code		
Silica weight	g	Bare: 4 g Bonded: ≥ 5 g	Bare: 12 g Bonded: ≥ 15 g	Bare: 25 g Bonded: ≥ 30 g	Bare: 40 g Bonded: ≥ 40 g	Bare: 80 g Bonded: ≥ 90 g	Bare: 120 g Bonded: ≥ 130 g	Bare: 220 g Bonded: ≥ 230 g	Bare: 330 g Bonded: ≥ 360 g	Bare: 800 g Bonded: ≥ 870 g	Bare: 1,600 g Bonded: ≥ 1,700 g	g	Silica weight		
#/box	unit	Bare: 20 Bonded: 2	Bare: 20 Bonded: 1	Bare: 15 Bonded: 1	Bare: 15 Bonded: 1	Bare: 12 Bonded: 1	Bare: 10 Bonded: 1	Bare: 4 Bonded: 1	Bare: 4 Bonded: 1	Bare: 2 Bonded: 1	Bare: 2 Bonded: 1	unit	#/box		
Dimension (OD x Length)	mm	16 x 98	25 x 117	25 x 165	32 x 169	36 x 237	42 x 256	66 x 195	66 x 268	89 x 382	120 x 429	mm	Dimension (OD x Length)		
Column volume	mL	4.9	17	31	47	123	190	306	441	1,500	2,900	mL	Column volume		
Recom. flow rate	mL/ min	15 - 25	20 - 40	20 - 45	25 - 50	40 - 80	60 - 120	60 - 180	80 - 180	200 - 300	300 - 450	mL/ min	Recom. flow rate		
Loading capacity	g	0.005 - 0.4	0.015 - 1.2	0.025 - 2.5	0.05 - 4.0	0.10 - 8.0	0.15 - 12.0	0.25 - 22.0	0.50 - 33.0	0.80 - 80.0	1.60 - 160.0	g	Loading capacity		

How to create product number: Product Number => FLH - [Chemistry Code] - [Cartridge Code] Ex. cartridge 4 g with silica gel => FLH-R10030B-ISO04

es
ວ
σ
· · -
ᆕ
_
, m
ပ
_
<u><u></u></u>
0
LL.
Ĕ_
<u>Q</u>
0
10
v)
σ
S

SiliaSep Ordering Information

Silia <i>Sep</i> Type	Silia <i>Sep</i> 4 g	Silia <i>Sep</i> 12 g	Silia <i>Sep</i> 25 g	Silia <i>Sep</i> 40 g	Silia <i>Sep</i> 80 g		
Quantity per box	20 / box	20 / box	15 / box	15 / box	12 / box		
SiliaSep Silica	FLH-R10030B-ISO04	FLH-R10030B-ISO12	FLH-R10030B-ISO25	FLH-R10030B-ISO40	FLH-R10030B-ISO80		
SiliaSep Silica HP	FLH-R10017B-ISO04	FLH-R10017B-ISO12	FLH-R10017B-ISO25	FLH-R10017B-ISO40	FLH-R10017B-ISO80		
Other Silia Sep Phases							
Quantity per box	2 / box	1/box	1/box	1/box	1/box		
SiliaSep Amine	FLH-R52030B-ISO04	FLH-R52030B-ISO12	FLH-R52030B-ISO25	FLH-R52030B-ISO40	FLH-R52030B-IS080		
SiliaSep Diol	FLH-R35030B-ISO04	FLH-R35030B-ISO12	FLH-R35030B-ISO25	FLH-R35030B-ISO40	FLH-R35030B-IS080		
SiliaSep Cyano	FLH-R38030B-ISO04	FLH-R38030B-ISO12	FLH-R38030B-ISO25	FLH-R38030B-ISO40	FLH-R38030B-ISO80		
Silia <i>Sep</i> C18 (17%)	FLH-R33230B-ISO04	FLH-R33230B-ISO12	FLH-R33230B-ISO25	FLH-R33230B-ISO40	FLH-R33230B-ISO80		
SiliaSep SCX-2	FLH-R51230B-ISO04	FLH-R51230B-ISO12	FLH-R51230B-ISO25	FLH-R51230B-ISO40	FLH-R51230B-ISO80		
SiliaSep SAX nec	FLH-R66530B-ISO04	FLH-R66530B-ISO12	FLH-R66530B-ISO25	FLH-R66530B-ISO25	FLH-R66530B-ISO80		
SiliaSep SAX-2 nec	FLH-R66430B-ISO04	FLH-R66430B-ISO12	FLH-R66430B-ISO25	FLH-R66430B-ISO25	FLH-R66430B-ISO80		

Note: for Metal Scavengers Cartridges, see page 113 for more information.

SiliaSep Cartridges Ordering Information							
Silia <i>Sep</i> Type	Silia <i>Sep</i> 120 g	Silia <i>Sep</i> 220 g	Silia <i>Sep</i> 330 g	Silia <i>Sep</i> XL 800 g	Silia <i>Sep</i> XL 1600 g		
Quantity per box	10 / box	4 / box	4 / box	2 / box	2 / box		
SiliaSep Silica	FLH-R10030B-IS120	FLH-R10030B-IS220	FLH-R10030B-IS330	FLH-R10030B-IS750	FLH-R10030B-I1500		
SiliaSep Silica HP	FLH-R10017B-IS120	FLH-R10017B-IS220	FLH-R10017B-IS330	-	-		
Other Silia Sep Phases							
Quantity per box	2 / box	1/box	1/box	1/box	1/box		
SiliaSep Amine	FLH-R52030B-IS120	FLH-R52030B-IS220	FLH-R52030B-IS330	FLH-R52030B-IS750	FLH-R52030B-I1500		
SiliaSep Diol	FLH-R35030B-IS120	FLH-R35030B-IS220	FLH-R35030B-IS330	FLH-R35030B-IS750	FLH-R35030B-I1500		
SiliaSep Cyano	FLH-R38030B-IS120	FLH-R38030B-IS220	FLH-R38030B-IS330	FLH-R38030B-IS750	FLH-R38030B-I1500		
SiliaSep C18 (17%)	FLH-R33230B-IS120	FLH-R33230B-IS220	FLH-R33230B-IS330	FLH-R33230B-IS750	FLH-R33230B-I1500		
SiliaSep SCX-2	FLH-R51230B-IS120	FLH-R51230B-IS220	FLH-R51230B-IS330	FLH-R51230B-IS750	FLH-R51230B-I1500		
SiliaSep SAX nec	FLH-R66530B-IS120	FLH-R66530B-IS220	FLH-R66530B-IS330	FLH-R66530B-IS750	FLH-R66530B-I1500		
SiliaSep SAX-2 nec	FLH-R66430B-IS120	FLH-R66430B-IS220	FLH-R66430B-IS330	FLH-R66430B-IS750	FLH-R66430B-I1500		

SiliaSep Solid-Load Cartridges

Usually, the use of solid-load technique (also called *dry-load*) will improve chromatography resolution. SiliaSep Solid-Load luer-lok cartridges are designed to be used with SiliaSep flash cartridges for sample loading.

Product Number	Sorbent	Weight / Volume	Description	Qty per bo
SPL-R10030B-10U	Silica (40 - 63 μm)	2 g / 10 mL	Silia <i>Sep</i> Silica Pre-packed Solid-Load Cartridge, 2 g, 10 mL	20
SPL-R10030B-10X	Silica (40 - 63 μm)	5 g / 10 mL	SiliaSep Silica Pre-packed Solid-Load Cartridge, 5 g, 10 mL	20
SPL-R10030B-60Y	Silica (40 - 63 μm)	10 g / 60 mL	Silia <i>Sep</i> Silica Pre-packed Solid-Load Cartridge, 10 g, 60 mL	16
SPL-R10030B-60K	Silica (40 - 63 μm)	25 g / 60 mL	Silia <i>Sep</i> Silica Pre-packed Solid-Load Cartridge, 25 g, 60 mL	16
SPL-R10030B-065	Silica (40 - 63 μm)	65 g / 150 mL	Silia <i>Sep</i> Silica Pre-packed XL Solid-Load Cartridge, 65 g, 150 mL	12
SPL-R10030B-270	Silica (40 - 63 μm)	270 g / 700 mL	Silia <i>Sep</i> Silica Pre-packed XL Solid-Load Cartridge, 270 g, 700 mL	6
SPL-R52030B-10X	Amine	5 g / 10 mL	Silia <i>Sep</i> Amine Pre-packed Solid-Load Cartridge, 5 g, 10 mL	20
SPL-R52030B-60K	Amine	25 g / 60 mL	Silia <i>Sep</i> Amine Pre-packed Solid-Load Cartridge, 25 g, 60 mL	16
SPL-R35030B-10X	Diol	5 g / 10 mL	Silia <i>Sep</i> Diol Pre-packed Solid-Load Cartridge, 5 g, 10 mL	20
SPL-R35030B-60K	Diol	25 g / 60 mL	Silia <i>Sep</i> Diol Pre-packed Solid-Load Cartridge, 25 g, 60 mL	16
SPL-R38030B-10X	Cyano	5 g / 10 mL	Silia <i>Sep</i> Cyano Pre-packed Solid-Load Cartridge, 5 g, 10 mL	20
SPL-R38030B-60K	Cyano	25 g / 60 mL	Silia <i>Sep</i> Cyano Pre-packed Solid-Load Cartridge, 25 g, 60 mL	16
SPL-R33230B-10X	C18 (17%)	5 g / 10 mL	Silia <i>Sep</i> C18 (17%) Pre-packed Solid-Load Cartridge, 5 g, 10 mL	20
SPL-R33230B-60K	C18 (17%)	25 g / 60 mL	Silia <i>Sep</i> C18 (17%) Pre-packed Solid-Load Cartridge, 25 g, 60 mL	16
SPL-0009-010	Empty	- / 10 mL	Silia <i>Sep</i> Empty Solid-Load Cartridge, 10 mL	100
SPL-0012-060	Empty	- / 60 mL	Silia <i>Sep</i> Empty Solid-Load Cartridge, 60 mL	100
AUT-0090-150	Empty	- / 150 mL	Silia <i>Sep</i> Empty Solid-Load Cartridge, 150 mL	12
AUT-0090-700	Empty	- / 700 mL	SiliaSep Empty Solid-Load Cartridge, 700 mL	6

Note: for optimal purification performance, solvent removal under vacuum is highly recommended.

SiliaSep Plungers

Silia <i>Sep</i> Plungers*					
Description					
Plunger for 10 mL solid-load cartridge (16 mr					
Plunger for 60 mL solid-load cartridge (27 m					

*Ask for SiliaSep Plungers Operating Instructions Guide

Either SiliaSep pre-packed (for liquid injection, various choices of media available) or empty solid-load (for *silica-sample slurry*) are available to better suit your needs.

XL Solid-Load Flanges

SiliaSep Accessories for System Conversion

SiliCycle's SiliaSep Flash Cartridges are designed to be a universal closed-top flash columns (luer-lok connection). Take advantage of SiliaSep's benefits and enhanced performance by converting your system with an inexpensive adaptor today.

SiliCycle manufactures SiliaSep cartridges that will fit perfectly (no adaptor required) on the following systems:

- Teledyne Isco[™] CombiFlash[®] (XL) systems
- Varian® (Analogix®) IntelliFlash® & SimpliFlash®
- Interchim PuriFlash[™] 430 evo & Spot II (Armen[®])
- Büchi Sepacore™
- Grace Revelaris™

SiliaSep on Biotage[™] Instruments

With Biotage Isolera[™] Systems

With Isolera systems, you can directly use SiliaSep without adapters.

Even if SiliaSep does not have luer-loks at both ends like the SNAP cartridge, you can connect it to your current solvent line (*if you prefer to have both ends* with luer fittings, contact us for optional adapters).

With Biotage Horizon[™], SP1 & SP4 Systems

Note: if you are already using SNAP with your system, no modification is required. See previous point.

With these Biotage's systems, you have two different options:

Option A: toggle between Biotage and SiliCycle columns Option B: use only Silia Sep cartridges. No compression module will be necessary from now on.

Option A: Using Adaptors

If you are using the Biotage compression modules (metal cylinders), simply link your existing solvent line connection to the SiliaSep adaptors.

To do so, attach the Biotage Adaptor Kit (PN: KAD-1006) to the existing Swagelock[™] stainless steel connectors, which will allow them to connect to SiliCycle SiliaSep columns. This is only if you want to toggle between Biotage and SiliCycle columns.

Biotage Adapter Kit (2 pieces) PN: KAD-1006

Option B: Changing Solvent Lines

Changing the solvent lines from your current system The female luer (A), which connects to the top of the to a Luer-Lok one will allow direct connection of column, goes onto the flow outlet of the instrument SiliaSep Flash Cartridges. No compression module (top hole on the instrument). will be needed from now on.

The male luer (B) fits on top of the slip tip on the To switch completely to the SiliaSep columns, simply bottom of the column and connects to the flow inlet unscrew the fittings that are currently installed on the of the instrument (coming out of the column). Biotage systems and screw in the SiliaSep Solvent **Note**: SiliaSep Solid-Load Cartridges and Plungers are Line Replacement (PN: KAD-1014) with the luer SiliCycle's alternative to Biotage's samplet (see page 163). connections we supply.

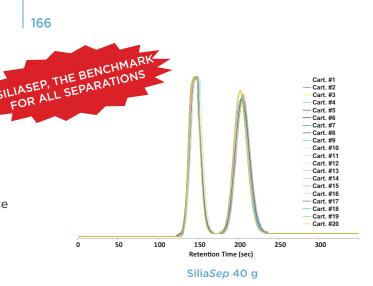
SiliaSep Support Rings

Support rings will allow Silia Sep cartridges to sit on the Biotage SP1 & SP4 instruments.

Silia <i>Sep</i> Support Rings						
Product Number	Description	Qty per box				
AUT-0068-004	Support ring-4 (16 mm)	5				
AUT-0068-010	Support ring-12, 25 (25 mm)	5				
AUT-0068-040	Support ring-40 (32 mm)	5				
AUT-0068-080	Support ring-80 (36 mm)	5				
AUT-0068-120	Support ring-120 (42 mm)	5				
KAD-1008	Support ring kit	5 different sizes				

SiliaSep on FlashMaster[™] Instruments

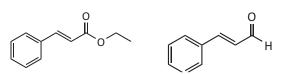
On FlashMaster systems, cartridges are running upside down (*reversed*). To use SiliaSep cartridges on any FlashMaster instrument, simply connect the SiliaSep cartridge directly on the instrument using the FlashMaster Adapter Kit (*PN: KAD-1016*) without the plunger. One piece holds the cartridge in place while the other connects to the solvent line.



SiliaSep Reproducibility

SiliaSep (HP) Flash Cartridges offer incredible performance over competitive products due to the higher silica gel quality and innovative packing technology. Both cartridge series allow superior results and can be considered the products of choice for all purification needs.


SiliaSep Superior Performance

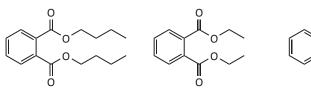

SiliCycle evaluated the performance of SiliaSep cartridges against some established players in chromatography and purification. In this study, cartridge performances were evaluated by the determination of different parameters including plate count (N), reduced plate height (h), symmetry index (SI_{10%}) and resolution factor (R). In all cases, SiliaSep allows excellent performance over the competition.

Better Separations with SiliaSep - Higher Plate Count (N)

SiliaSep 40 g versus another 40 g cartridge (irregular silica 40-63 µm)

As shown below, although both cartridges have a comparable symmetry index, the SiliaSep 40 g gives a better separation due to a higher plate count and a smaller plate height compared to the cartridge from the competition.

a) Ethyl cinnamate

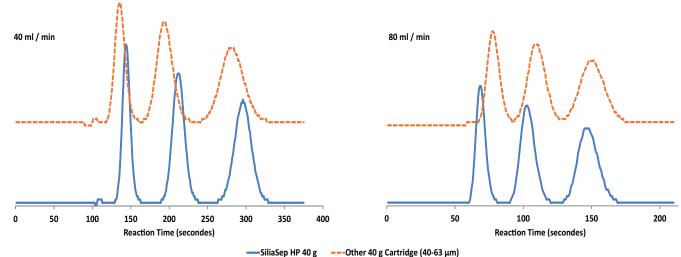

b) trans-cinnamaldehyde

Separation test description

Mobile phase: Solvent A: EtOAc Solvent B: Hexane Gradient: 0 to 75% of solvent B in 8 minutes Flow rate: 40 mL / min Injection volume: 5 ml Wavelength: 254 nm

Observed Chromatographic Parameters						
Cartridge	Ν	h	SI _{10%}	R		
Silia <i>Sep</i> 40 g	2,157	1.14	0.98	3.06		
Competitor 40 g	830	2.80	1.11	1.57		

High Resolution with SiliaSep HP



a) Dibutylphthalate

b) Diethylphthalate c) Dimethylphthalate

SiliaSep HP - Save Time with Faster Flow Rates

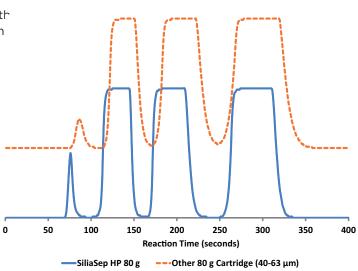
The high resolution from SiliaSep HP allows the purification to run at a higher flow rate with the same high efficiency without compromising the quality of the separation.

SiliaSep HP - Higher Loading Capacity

The high performance of SiliaSep HP, associated with the higher plate count, can also yield a higher loadin capacity. As shown in the results below, SiliaSep HP may be loaded with over 50% more products compared to other 40-63 μm cartridges and still provide very good separation.

Separation test description for the two

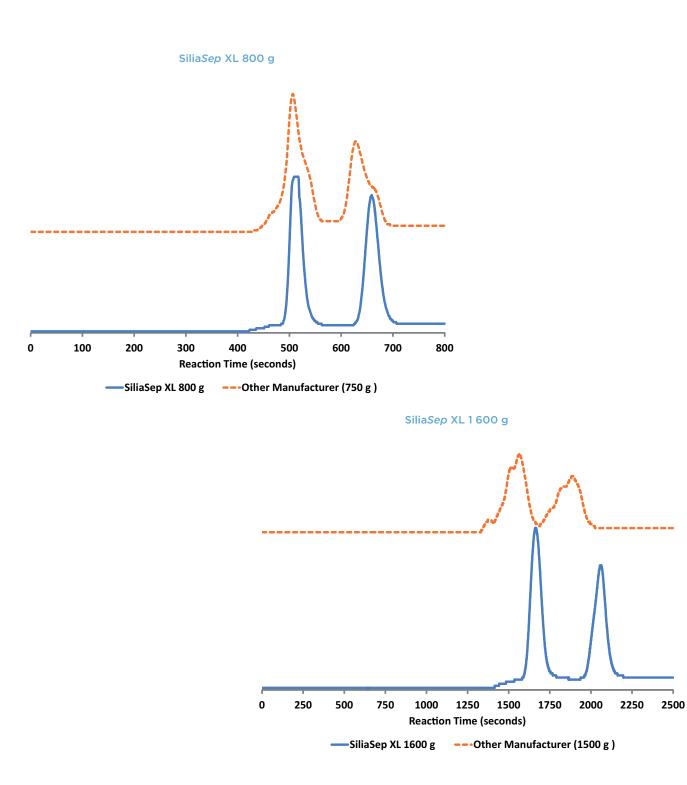
experiments shown below


Injection volume: 5 ml

Wavelength: 254 nm

Mobile phase: 20% EtOAc in Hexane

Flow rate: 40 mL / min or 80 mL / min



COMPARED TO A ELL-KNOWN BRAND

SiliaSep XL - Superior Resolution

SiliCycle evaluated the performance of the SiliaSep XL cartridges compared to a well-known brand. For both sizes, SiliaSep XL outperforms the competition.

SiliaSep OT (FlashMaster[™] Compatible Flash Cartridges)

Silia <i>Sep</i> OT Car	tridges (<i>rated 60 p</i>	si)				
Silica Weight	2 g	5 g	10 g	15 g	20 g	
Dimensions ID x L	15.8 x 90 mm	20.5 x 100 mm	26.8 x 154 mm	26.8 x 154 mm	26.8 x 154 mm	
Volume	12 mL	25 mL	70 mL	70 mL	70 mL	
Quantity per box	20 / box	20 / box	16 / box	16 / box	16 / box	
SiliaSep OT Phases						
SiliaSep OT Silica	FLH-R10030B-15U	SPE-R10030B-25X	FLH-R10030B-70Y	FLH-R10030B-70i	FLH-R10030B-70Z	
SiliaSep OT Amine	SPE-R52030B-12U	SPE-R52030B-20X	FLH-R52030B-70Y	FLH-R52030B-70i	FLH-R52030B-70Z	
SiliaSep OT Diol	SPE-R35030B-12U	SPE-R35030B-20X	FLH-R35030B-70Y	FLH-R35030B-70i	FLH-R35030B-70Z	
SiliaSep OT Cyano	SPE-R38030B-12U	SPE-R38030B-20X	FLH-R38030B-70Y	FLH-R38030B-70i	FLH-R38030B-70Z	
Silia <i>Sep</i> OT C18 (17%)	SPE-R33230B-12U	SPE-R33230B-20X	FLH-R33230B-70Y	FLH-R33230B-70i	FLH-R33230B-70Z	
SiliaSep OT SCX-2	SPE-R51230B-12U	SPE-R51230B-20X	FLH-R51230B-70Y	FLH-R51230B-70i	FLH-R51230B-70Z	
SiliaSep OT SAX nec	SPE-R66530B-12U	SPE-R66530B-20X	FLH-R66530B-70Y	FLH-R66530B-70i	FLH-R66530B-70Z	
SiliaSep OT SAX-2 nec	SPE-R66430B-12U	SPE-R66430B-20X	FLH-R66430B-70Y	FLH-R66430B-70i	FLH-R66430B-70Z	

Note: for Metal Scavengers Cartridges, see page 113 for more information.

Silia <i>Sep</i> OT Cartridges (<i>rated 60 psi</i>)							
Silica Weight	25 g	50 g	70 g	100 g			
Dimensions ID x L	38.2 x 170 mm	38.2 x 170 mm	38.2 x 170 mm	40.0 x 220 mm			
Volume	150 mL	150 mL	150 mL	276 mL			
Quantity per box	10 / box	10 / box	10 / box	12 / box			
SiliaSep OT Phases							
SiliaSep OT Silica	FLH-R10030B-95K	FLH-R10030B-95M	FLH-R10030B-95N	FLH-R10030B-276F			
SiliaSep OT Amine	FLH-R52030B-95K	FLH-R52030B-95M	FLH-R52030B-95N	FLH-R52030B-276F			
SiliaSep OT Diol	FLH-R35030B-95K	FLH-R35030B-95M	FLH-R35030B-95N	FLH-R35030B-276F			
SiliaSep OT Cyano	FLH-R38030B-95K	FLH-R38030B-95M	FLH-R38030B-95N	FLH-R38030B-276F			
SiliaSep OT C18 (17%)	FLH-R33230B-95K	FLH-R33230B-95M	FLH-R33230B-95N	FLH-R33230B-276F			
SiliaSep OT SCX-2	FLH-R51230B-95K	FLH-R51230B-95M	FLH-R51230B-95N	FLH-R51230B-276F			
SiliaSep OT SAX nec	FLH-R66530B-95K	FLH-R66530B-95M	FLH-R66530B-95N	FLH-R66530B-276F			
SiliaSep OT SAX-2 nec	FLH-R66430B-95K	FLH-R66430B-95M	FLH-R66430B-95N	FLH-R66430B-276F			

SiliaSep OT are also available with bar code for automation purposes.

168

SiliaSep BT (Biotage™ "i" Compatible Flash Cartridges)

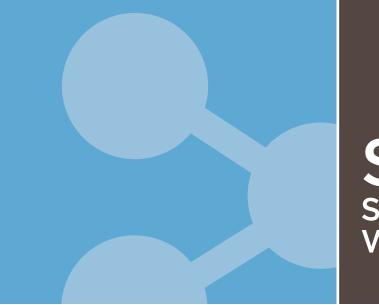
Cartridge Type	125	12M	40S	40M	40L			
Dimensions ID x L	12 x 75 mm	12 x 150 mm	40 x 75 mm	40 x 150 mm	40 x 200 mm			
Quantity per box	20 / box	20 / box	12 / box	12 / box	12 / box			
SiliaSep BT Silica	FLH-R10030B-12iS	FLH-R10030B-12iM	FLH-R10030B-40iS	FLH-R10030B-40iM	FLH-R10030B-40iL			
Other SiliaSep BT Phases								
Quantity per box	2 / box	2 / box	1/box	1/box	1/box			
SiliaSep BT Amine	FLH-R52030B-12iS	FLH-R52030B-12iM	FLH-R52030B-40iS	FLH-R52030B-40iM	FLH-R52030B-40iL			
SiliaSep BT Diol	FLH-R35030B-12iS	FLH-R35030B-12iM	FLH-R35030B-40iS	FLH-R35030B-40iM	FLH-R35030B-40iL			
SiliaSep BT Cyano	FLH-R38030B-12iS	FLH-R38030B-12iM	FLH-R38030B-40iS	FLH-R38030B-40iM	FLH-R38030B-40iL			
SiliaSep BT C18 (17%)	FLH-R33230B-12iS	FLH-R33230B-12iM	FLH-R33230B-40iS	FLH-R33230B-40iM	FLH-R33230B-40iL			
SiliaSep BT SCX-2	FLH-R51230B-12iS	FLH-R51230B-12iM	FLH-R51230B-40iS	FLH-R51230B-40iM	FLH-R51230B-40iL			
SiliaSep BT SAX nec	FLH-R66530B-12iS	FLH-R66530B-12iM	FLH-R66530B-40iS	FLH-R66530B-40iM	FLH-R66530B-40il			
SiliaSep BT SAX-2 nec	FLH-R66430B-12iS	FLH-R66430B-12iM	FLH-R66430B-40iS	FLH-R66430B-40iM	FLH-R66430B-40i			


Cartridge Type	65	75S	75M	75L		
Dimensions ID x L	65 x 200 mm	75 x 90 mm	75 x 170 mm	75 x 350 mm		
Quantity per box	6 / box	2 / box*	2 / box*	2 / box*		
SiliaSep BT Silica	FLH-R10030B-65i	FLH-R10030B-75iS	FLH-R10030B-75iM	FLH-R10030B-75iL		
Other SiliaSep BT Phases						
Quantity per box	1/box	1/box	1/box	1/box		
SiliaSep BT Amine	FLH-R52030B-65i	FLH-R52030B-75iS	FLH-R52030B-75iM	FLH-R52030B-75iL		
SiliaSep BT Diol	FLH-R35030B-65i	FLH-R35030B-75iS	FLH-R35030B-75iM	FLH-R35030B-75iL		
SiliaSep BT Cyano	FLH-R38030B-65i	FLH-R38030B-75iS	FLH-R38030B-75iM	FLH-R38030B-75iL		
SiliaSep BT C18 (17%)	FLH-R33230B-65i	FLH-R33230B-75iS	FLH-R33230B-75iM	FLH-R33230B-75iL		
SiliaSep BT SCX-2	FLH-R51230B-65i	FLH-R51230B-75iS	FLH-R51230B-75iM	FLH-R51230B-75iL		
SiliaSep BT SAX nec	FLH-R66530B-65i	FLH-R66530B-75iS	FLH-R66530B-75iM	FLH-R66530B-75iL		
SiliaSep BT SAX-2 nec	FLH-R66430B-65i	FLH-R66430B-75iS	FLH-R66430B-75iM	FLH-R66430B-75iL		

*Box of 10 also available.

SiliaSep BT Silica Characteristics **Column Volume** Recommended Loading Capacity **Product Number** Silica Weight (g) (mL) Flow Rate (mL/min (g) FLH-R10030B-12iM 0.005 - 0.45 6 3 - 12 FLH-R10030B-12iM 12 3 - 12 0.01 - 0.90 9 FLH-R10030B-40iS 45 60 25 - 50 0.05 - 4.5 FLH-R10030B-40iM 90 120 25 - 50 0.10 - 9.0 FLH-R10030B-40iL 135 160 25 - 50 0.15 - 13.5 FLH-R10030B-65i 350 350 65 - 85 0.4 - 35 FLH-R10030B-75iS 200 300 100 - 250 0.2 - 20 FLH-R10030B-75iM 400 100 - 250 500 0.4 - 40 FLH-R10030B-75iL 100 - 250 0.8 - 80 800 1.000

SiliaSep Sorbent Selection Chart


SiliCycle offers a wide range of SiliaSep sorbents to cover many kinds of purification. The following chart is designed to serve as a guide for the selection of the appropriated sorbent based on the characteristics of the sample to be purified.

SiliaSep[™] Flash Cartridges

Silia*Sep* Loading Chart

SiliaS	Silia <i>Sep</i> Cartridge Loading Chart										
Dimensions OD x L (mm x mm)	SiliaSep Format	∆CV = 0.1-0.6 Load (g)	∆CV = 0.7-1.2 Load (g)	∆CV = 1.3-1.8 Load (g)	∆CV = 1.9-2.4 Load (g)	∆CV = 2.5-3.1 Load (g)	∆CV = 3.2-3.8 Load (g)	∆CV = 3.9-4.5 Load (g)	∆CV = 4.6-5.2 Load (g)	∆CV = 5.3-6.0 Load (g)	∆CV = > 6 Load (g)
16 x 98	4 g	0.040	0.080	0.120	0.160	0.200	0.240	0.280	0.320	0.360	0.400
16 x 98	4 g (HP)	0.052	0.104	0.156	0.208	0.260	0.312	0.364	0.416	0.468	0.520
25 x 117	12 g	0.120	0.240	0.360	0.480	0.600	0.720	0.840	0.960	1.080	1.200
25 x 117	12 g (HP)	0.156	0.312	0.468	0.624	0.780	0.936	1.092	1.248	1.404	1.560
25 x 165	25 g	0.250	0.500	0.750	1.000	1.250	1.500	1.750	2.000	2.250	2.500
25 x 165	25 g (HP)	0.325	0.650	0.975	1.300	1.625	1.950	2.275	2.600	2.925	3.250
32 x 169	40 g	0.400	0.800	1.200	1.600	2.000	2.400	2.800	3.200	3.600	4.000
32 x 169	40 g (HP)	0.520	1.040	1.560	2.080	2.600	3.120	3.640	4.160	4.680	5.200
36 x 237	80 g	0.800	1.600	2.400	3.200	4.000	4.800	5.600	6.400	7.200	8.000
36 x 237	80 g (HP)	1.040	2.080	3.120	4.160	5.200	6.240	7.280	8.320	9.360	10.400
42 x 256	120 g	1.200	2.400	3.600	4.800	6.000	7.200	8.400	9.600	10.800	12.000
42 x 256	120 g (HP)	1.560	3.120	4.680	6.240	7.800	9.360	10.920	12.480	14.040	15.600
66 x 195	220 g	2.200	4.400	6.600	8.800	11.000	13.200	15.400	17.600	19.800	22.000
66 x 195	220g(HP)	2.860	5.720	8.580	11.440	14.300	17.160	20.020	22.880	25.740	28.600
66 x 268	330 g	3.300	6.600	9.900	13.200	16.500	19.800	23.100	26.400	29.700	33.000
66 x 268	330g(HP)	4.290	8.580	12.870	17.160	21.450	25.740	30.030	34.320	38.610	42.900
89 x 382	800 g	8.000	16.000	24.000	32.000	40.000	48.000	56.000	64.000	72.000	80.000
120 x 429	1600 g	10.000	20.000	30.000	40.000	50.000	60.000	70.000	80.000	90.000	100.000

Correlation Rf vs CV					
Rf	CV				
0.95	1.05				
0.90	1.10				
0.85	1.17				
0.80	1.25				
0.75	1.33				
0.70	1.40				
0.65	1.54				
0.60	1.65				
0.55	1.81				
0.50	2.00				
0.45	2.22				
0.40	2.50				
0.35	2.86				
0.30	3.33				
0.25	4.00				
0.20	5.00				
0.15	6.67				
0.10	10.00				
0.05	20.00				

Silia*Sep*[™] Flash Cartridges

M SPE Cartridges and Well Plates

Silia*Prep*[™] SPE Cartridges and Well Plates

Using SiliaPrep SPE Cartridges and Well Plates guarantees the following benefits:

- Choice of a wide variety of Silia*Bond* high-quality sorbents
- Very good separation (*tight particle size* distribution and no fines)
- High recoveries and yields
- Less time and solvent required for conditioning the sorbent
- Reproducible flow rates from lot-to-lot
- Excellent packing and storage qualities

Silia
 Prep Solid-Phase Extraction SPE Cartridges and Well Plates

Solid-phase extraction (SPE) is designed for rapid sample preparation and purification prior to chromatographic analysis. You can optimize your SPE protocols by using SiliCycle SiliaPrep SPE Cartridges and Well Plates.

SiliCycle offers products to meet your specific purification needs. SiliaPrep products are available in different formats including SPE cartridges and 48-, 96-, and 384-well plates, with different sorbents (SiliaFlash and SiliaBond), and in bed weights up to 20 grams (>20 g are also available in SiliaSep OT formats, see page

167). The well plates are used in high throughput combinatorial chemistry, drug discovery and screening, metabolic pharmacokinetic applications, and for automated methods such as a multiprobe approach.

By using Silia*Prep* products you will generate higher purity samples and reduce the number of false positives in your screening, giving you higher quality data. SiliaPrep cartridges are packed with finesfree Silia*Flash* silica gel sorbents.

Sorbent Specifications

SiliaPrep products are packed with SiliCycle's SiliaFlash to provide superior performance for all types of applications. This is due to the narrow particle size distribution and high purity. Although the standard products included in this brochure are made of Silia*Flash* F60 (40-63 μ m, 60 Å), custom products are available with any type of silica offered in our catalog or website (IMPAQ, irregular and spherical in various pore and particle sizes, etc.) and in any format on a custom order basis. Contact us for more information.

Plastic Device Specifications

Standard SiliaPrep cartridges are made with flanged polypropylene (PP) tubes and 20 µm polyethylene (PE) frits. Other plastic materials (Teflon[®], HDPE, etc.), frit porosity (10 µm), and cartridge rim's (flangeless) are available on a custom order basis.

Silia Prep Adapters:

Enable cartridge stacking or easy SPE cartridge connection with syringe or gas lines (for positive pressure).

AUT-0010	Silia <i>Prep</i> Adapter 1, 3 and 6 mL SPE (<i>12/box</i>)
AUT-0011	Silia <i>Prep</i> Adapter 12, 20 and 60 mL SPE (6/box)

Silia Prep Vacuum Adapters:

Fast, user friendly, and economical adapters for SPE cartridges. Only a vacuum source is needed.

AUT-0043	20/40 SiliaPrep Vacuum Adapter
AUT-0044	19/22 SiliaPrep Vacuum Adapter
AUT-0045	14/20 Silia <i>Prep</i> Vacuum Adapter
AUT-0046	22/400 Vial-Silia <i>Prep</i> Vacuum Adapter without Vial Connector
AUT-0047	22/400 Vial-Silia <i>Prep</i> Vacuum Adapter with Vial Connector

SiliaPrep Vacuum Manifold:

Run 12 or 24 samples simultaneously with a controlled flow rate for higher reproducibility.

AUT-0128-12 SiliaPrep Vacuum Manifold 12 positions AUT-0129-24 SiliaPrep Vacuum Manifold 24 positions

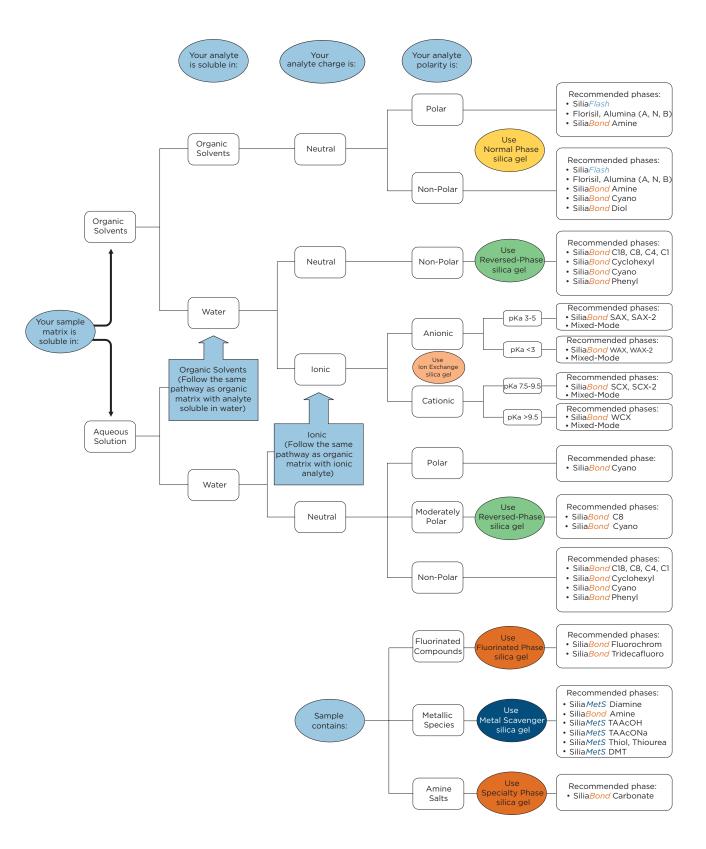
Silia
 Prep Empty tubes:

Empty Tube	Empty Tubes					
Formats	Description					
SIM-0007-001	Empty 1 mL SPE tube with 2 frits (100/box)					
SIM-0008-003	Empty 3 mL SPE tube with 2 frits (100/box)					
SIM-0002-006	Empty 6 mL SPE tube with 2 frits (100/box)					
SIM-0003-012	Empty 12 mL SPE tube with 2 frits (100/box)					
SIM-0004-020	Empty 25 mL SPE tube with 2 frits (100/box)					
SIM-0006-060	Empty 60 mL SPE tube with 2 frits (100/box)					
SIM-0009-150	Empty 150 mL SPE tube with 2 frits (<i>20/box</i>)					

Standard Method Development Procedure

The solid phase methodology will vary depending on the sorbent (*normal, reversed, ion exchange*). Here, we propose generic methods for each phase based on sample and sorbent properties. However, procedures can be slightly different from one sample to another.

Standard Method Dev	Standard Method Development Procedure						
Procedure Step	Reversed-Phase	Ion Exchange Phase	Normal-Phase				
Analyte properties	Non-polar, uncharged or neutralized, hydrophobic	lonized or charged	Slightly to moderately polar, uncharged				
Matrix sample properties	Solvents and aqueous (buffer)	Aqueous (<i>buffer</i>) and pH-ajusted solutions	Organic solvents				
Conditioning step	Water-miscible organic solvents	Water-miscible organic solvents or aqueous buffered solution	Sample solvent or methanol				
Sample loading	Dissolve analyte in highly polar solvents	Dissolve analyte in highly polar solvents	Dissolve analyte in low polar solvents				
Washing	Aqueous or buffered solution and polar solvents	Aqueous solutions containing salts	Non-polar solvents				
Elution	Polar or non-polar organic solvents	Polar solvents, may contain acids or bases	Mixture of non-polar (5 - 50%) an polar solvents				


Suggested Elution Solvents					
Reversed-Phase	Polarity	Ion Exchange Phase	Polarity	Normal Phase	
THF Acetone Ethyl acetate Acetonitrile Methanol	Low High	For complete ionization, sample should be adjusted 2 pH units above or below the analyte pKa. pH can be used to neutralize analyte or sorbent. Use 2% strong acid or base in acetonitrile or methanol.	Low High	Hexane CH2Cl2 THF Acetone Acetonitrile	

SiliaPrep[™] SPE Cartridges and Well Plates

Product Selection Guide by Sample Properties

Product Selection Guide by Manufacturer

Product Selection Gu	ide by Manufacturer								
SiliCycle SiliaPrep	SiliCycle Part Number	Agilent Bond Elut®	Biotage Isolute®	Macherey-Nagel Chromabond®	Macron Chemicals ^a Bakerbond [®]	Phenomenex Strata®	Supelco Discovery® and SupelClean®	Whatman (GE Healthcare)	Waters Sep-Pak®
Non Polar Phases									
SiliaPrep C18 nec (23 %)	SPE-R30130B-xxx		C18						
SiliaPrep C18 (17 %)	SPE-R31930B-xxx	C18	C18 (EC)	C18 ec	Octadecyl (C18)	C18-E	DSC-18 and ENVI-18	ODS-5	tC18
SiliaPrep C18 nec (17 %)	SPE-R35530B-xxx	C18 OH		C18	Light Load Octadecyl	C18-U			
SiliaPrep C18 WPD	SPE-R33229G-xxx		MFC18	C18 ec f		C18-T			C18
SiliaPrep C8	SPE-R31030B-xxx		C8 (EC)		Octyl (C8)	C8	DSC-8 and ENVI-8	C8	C8
SiliaPrep C8 nec	SPE-R31130B-xxx		C8	C8					
SiliaPrep Cyclohexyl	SPE-R61530B-xxx	СН	CH (EC)	C ₆ H ₁₁ ec	Cyclohexyl (C ₆ H ₁₁)				
SiliaPrep Phenyl	SPE-R34030B-xxx	РН	PH (EC)	C ₆ H ₅	Phenyl (C_6H_5)	Phenyl	DSC-Ph and LC-Ph		
Polar Phases									
SiliaPrep Silica	SPE-R10030B-xxx	SI	SI	SiOH	Silica gel (SiOH)	Silica (Si-1)	Silica	SIL	Silica
SiliaPrep Cyano	SPE-R38030B-xxx	Cyano	CN (EC)	CN	Cyano (CN)	Cyano (CN)⁵	DSC-CN and LC-CN		Cyanopropyl
SiliaPrep Diol nec	SPE-R35030B-xxx	Diol (20H)⁵	DIOL	ОН	Diol (COHCOH)		DSC-Diol and LC-Diol		Diolb
SiliaPrep Florisil	SPE-AUT-0014-xxx	Florisil	FL	Florisil	Florisil (Mg ₂ SiO ₃)		ENVI-Florisil	FLO	Florisil
SiliaPrep Frorisil PR	SPE-AUT-0015-xxx					Florisil (FL-PR)			
SiliaPrep Alumina Acidic	SPE-AUT-0053-xxx	Alumina A (AL-A)	AL-A	Alox A			LC-Alumina-A		Alumina A
SiliaPrep Alumina Neutral	SPE-AUT-0054-xxx	Alumina N (AL-N)	AL-N	Alox N	Alumina Neutral	Alumina-N (AL-N)	LC-Alumina-N		Alumina N
SiliaPrep Alumina Basic	SPE-AUT-0055-xxx	Alumina B (AL-B)	AL-B	Alox B			LC-Alumina-B		Alumina B
Ion Exchange Phases									
SiliaPrep SAX nec	SPE-R66530B-xxx	SAX ^b	SAX	SB	Quaternary Amine	SAX ^b	DSC-SAX and LC-SAX	SAX	Accell Plus QMA
SiliaPrep SAX-2 nec	SPE-R66430B-xxx	PRS⁵	PE-AX						
SiliaPrep SCX	SPE-R60530B-xxx	SCX⁵	SCX-3 ^b	SA	Aromatic Sulfonic Acid	SCX ^b	DSC-SCX and LC-SCX	SCX⁵	
SiliaPrep SCX-2	SPE-R51230B-xxx		SCX-2 ^b	PSA					
SiliaPrep WAX	SPE-R52030B-xxx	NH ₂ ^b	NH ₂	NH ₂	Amino (NH ₂)	NH ₂ /WAX ^b	DSC-NH ₂ and LC-NH ₂ ^b	NH ₂ ^b	Aminopropyl
SiliaPrep Diamine (WAX-2)	SPE-R49030B-xxx	PSA ^b	Diamino	Diamino	Diamino (NH ₂ NH)		PSA		PSA
SiliaPrep WCX	SPE-R70030B-xxx	СВА	CBA⁵	PCA	Carboxylic Acid (COOH)	WCX ^b	DSC-WCX & LC-WCX		Accell Plus CM
Mixed-Mode and Special Phase	5								
SiliaPrep C8/SAX-2	SPM-R661230B-xxx	Certify II	НАХ			Screen-A	DSC-MCAX		
SiliaPrep SCX-2/SAX	SPM-R802830B-xxx	AccuCAT							
SiliaPrep C8/SCX-2/SAX	SPM-R02802830B-xxx		Multimode			Screen-C ^c			
SiliaPrep CleanDRUG	SPEC-R651230B-xxx	Certify⁵	HCX₫	Drug 1					
SiliaPrep CleanENVI	SPEC-R31930B-xxx			C18 PAH					
SiliaPrep Activated Carbon	SPE-AUT-0110-xxx	Carbon					ENVI-Carb		AC2
SiliaPrep DL AC/WAX	SP2-R11098-xxx						ENVI-Carb/NH ₂		Carbon Black/Amino
SiliaPrep DL AC/Diamine	SP2-R11007-xxx						ENVI-CarbII/PSA		Carbon Black/PSA
SiliaPrep PCB	SP2-R00650030B-xxx			SA/SiOH					

^a Mallinkrodt Baker, ^b Non-endcapped, ^c Endcapped, ^d Ion exchange phase is non-endcapped xxx = Formats

All SiliCycle products are endcapped unless noted by « nec » (non-endcapped)

178

Silia
 Prep Most Popular Phases

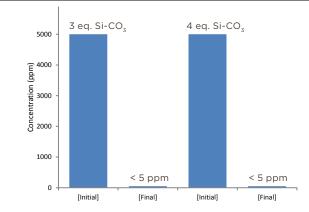
SiliaPrep Carbonate

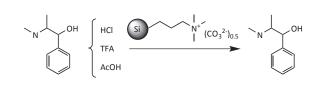
Description

SiliCycle has developed innovative specialty phases in SiliaPrep formats for specific applications, including Silia*Prep* Carbonate. It is the silica-bound equivalent of tetramethyl ammonium carbonate, and it can be used as a general base to quench a reaction, free base amines in their ammonium salt form and to scavenge acids, boronic acids and acidic phenols, including HOBt (widely used in amide coupling reactions).

Amine Free Basing Purification

General Procedure


- 1. SiliaPrep Carbonate (2-4 eq. of carbonate in respect to the amine) is conditioned with THF.
- 2. The amine solution in THF is loaded onto the SiliaPrep Carbonate cartridge.
- 3. Free salt amine is eluted with THF under gravity.


Note: other solvents can be used (methanol, ACN). Related publication: Org. Lett., 4, 2002, 1167

Amine Free Basing Purification Results					
Amine Salts		Yield (%)ª	Purity (%) ^b		
	HCI	98.7	94.4		
Ephedrine•	TFA	100	98.9		
	AcOH	100	99.2		

^aYield refers to the isolated product, ^bPurity determined by GC-FID

Scavenging HOBt with SiliaPrep Carbonate

Carbonate

 $(CO_3^{2-})_{0.5}$

SiliaPrep Carbonate SPE Formats						
Formats	Qty/Box	SiliaPrep Product Number				
Silia Prep Cartrid	ges					
1 mL/50 mg	100	SPE-R66030B-01B				
1 mL/100 mg	100	SPE-R66030B-01C				
3 mL/200 mg	50	SPE-R66030B-03G				
3 mL/500 mg	50	SPE-R66030B-03P				
6 mL/500 mg	50	SPE-R66030B-06P				
6 mL/1 g	50	SPE-R66030B-06S				
6 mL/2 g	50	SPE-R66030B-06U				
12 mL/2 g	20	SPE-R66030B-12U				
25 mL/5 g	20	SPE-R66030B-20X				
Silia <i>Prep</i> Large F	Reservoir Volume SI	PE Cartridges				
10 mL/200 mg	50	SPC-R66030B-10G				
10 mL/500 mg	50	SPC-R66030B-10P				
SiliaPrep 96-Well Plates						
2 mL/50 mg	1	96W-R66030B-B				
2 mL/100 mg	1	96W-R66030B-C				

SiliaPrep Propylsulfonic acid and Tosic Acid

Description

SiliCycle offers SiliaBond Propylsulfonic Acid (Si-SCX-2) and SiliaBond Tosic Acid (Si-SCX). Both are considered strong cation exchangers, as they maintain a negative charge throughout the pH scale. The aromatic ring of the SiliaBond Tosic Acid makes it slightly more acidic than the other. However, tests have demonstrated that they both have comparable strengths. The most common use is probably as a strong cation exchanger for amine "catch and release" purification in SPE cartridges.

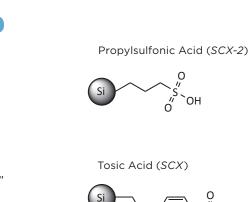
Catch and Release Amine Purification

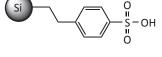
General procedure

The amine (1 eq.) was dissolved in methanol (2,500 ppm)

- 1. Cartridge was conditioned with methanol
- 2. Cartridge was loaded with the amine.
- 3. Cartridge was then washed with CH₂OH
- 2 M ammonia/methanol

Silia <i>Prep</i> SPE Formats							
Formats	Qty/Box	SiliaPrep Propylsulfonic Acid	SiliaPrep Tosic Acid				
SiliaPrep Cartridges							
1 mL/50 mg	100	SPE-R51230B-01B	SPE-R60530B-01B				
1 mL/100 mg	100	SPE-R51230B-01C	SPE-R60530B-01C				
3 mL/200 mg	50	SPE-R51230B-03G	SPE-R60530B-03G				
3 mL/500 mg	50	SPE-R51230B-03P	SPE-R60530B-03P				
6 mL/500 mg	50	SPE-R51230B-06P	SPE-R60530B-06P				
6 mL/1 g	50	SPE-R51230B-06S	SPE-R60530B-06S				
6 mL/2 g	50	SPE-R51230B-06U	SPE-R60530B-06U				
12 mL/2 g	20	SPE-R51230B-12U	SPE-R60530B-12U				
25 mL/5 g	20	SPE-R51230B-20X	SPE-R60530B-20X				
SiliaPrep Large Reservoir Volume	SPE Cartridges						
10 mL/200 mg	50	SPC-R51230B-10G	SPC-R60530B-10G				
10 mL/500 mg	50	SPC-R51230B-10P	SPC-R60530B-10P				
SiliaPrep - 96 Well Plates							
2 mL/50 mg	1	96W-R51230B-B	96W-R60530B-B				
2 mL/100 mg	1	96W-R51230B-C	96W-R60530B-C				


SiliaPrep SPE Formats						
Formats	Qty/Box	SiliaPrep Propylsulfonic Acid	SiliaPrep Tosic Acid			
Silia Prep Cartridges						
1 mL/50 mg	100	SPE-R51230B-01B	SPE-R60530B-01B			
1 mL/100 mg	100	SPE-R51230B-01C	SPE-R60530B-01C			
3 mL/200 mg	50	SPE-R51230B-03G	SPE-R60530B-03G			
3 mL/500 mg	50	SPE-R51230B-03P	SPE-R60530B-03P			
6 mL/500 mg	50	SPE-R51230B-06P	SPE-R60530B-06P			
6 mL/1 g	50	SPE-R51230B-06S	SPE-R60530B-06S			
6 mL/2 g	50	SPE-R51230B-06U	SPE-R60530B-06U			
12 mL/2 g	20	SPE-R51230B-12U	SPE-R60530B-12U			
25 mL/5 g	20	SPE-R51230B-20X	SPE-R60530B-20X			
SiliaPrep Large Reservoir Volume	SPE Cartridges					
10 mL/200 mg	50	SPC-R51230B-10G	SPC-R60530B-10G			
10 mL/500 mg	50	SPC-R51230B-10P	SPC-R60530B-10P			
SiliaPrep - 96 Well Plates						
2 mL/50 mg	1	96W-R51230B-B	96W-R60530B-B			
2 mL/100 mg	1	96W-R51230B-C	96W-R60530B-C			



(TmL/min)
4. Finally, the amine was released by
2 Manamania (mathanal

180

Catch and Release Results							
		Silia <i>Prep</i> SCX-2		Silia <i>Prep</i> SCX			
ine	# eq.	Catch (%) ^a	Release ^b	Catch (%) ^a	Release		
outylamine	2	98	90	98	97		
iline	2	100	100	100	100		
minothiazole	4	100	100	100	100		
litroaniline	4	100	100	100	100		

^a Determined from the initial solution. ^b Determined by(GC-FID) analysis of isolated product

SiliaPrep TMA Acetate nec (SAX-2)

Description

Strong anion exchangers (SAX) have been widely used in both chromatography and ion exchange SPE to selectively bind acidic drugs and/or analytes. In particular, weakly acidic compounds can be effectively extracted as SAX sorbents retain a permanent positive charge across the pH range.

SiliCycle has developed Silia*Bond* TMA Acetate nec (Si-SAX-2), a strong anion exchange sorbent with a low-selectivity acetate counter ion already in place. Typical loading is 1.00 mmol/g, which is higher than available equivalents. This sorbent more favorably retains acidic compounds with pKas < 5, such as carboxylic acids. This property can be used in organic chemistry applications to selectively purify acidic compounds or remove acidic impurities from reaction mixtures.

Catch and Release of Acidic Compounds

General procedure

Silia*Prep* TMA Acetate nec 2 g/6 mL (*SPE-R66430B-06U*) Solutions containing 1 and 2 mmol of acidic compounds in methanol were investigated.

- 1. Cartridge was conditioned with methanol.
- 2. Cartridge was loaded with the acidic solution.
- 3. Cartridge was then washed with methanol to remove any impurities.
- 4. The acid was released using a 10 mL solution of acetic acid in methanol or acetonitrile.

Catch and Release Purification Results					
nKa	Acid	Recove	ry (%)ª		
рКа	Acid	1 mmol	2 mmol		
2.1	О ОН ОН ИН2	100	99		
3.0	ОН	88	83		
4.2	ОН	100	100		
4.4	но ОН	99	91		
4.9	H ₂ N OH	90	83		

TMA Acetate nec (SAX-2)

CH3COO.

^a Determined from the isolated product

Separation of Acids Based on pKa Results

General Procedure

A solution containing equimolar quantities of phenol, benzoic acid and salicylic acid in methanol was prepared. The solution was loaded onto a Silia*Prep* TMA Acetate nec 2 g/6 mL cartridge (SPE-R66430B-06U). The phenol is not retained and a simple wash with methanol allows the isolation of the clean product. Elution with a 2% solution of acetic acid in methanol allowed the isolation of clean benzoic acid. Finally a 2% solution of HCl in acetonitrile was required to isolate clean salicylic acid. All yields were above 90% as indicated in table below.

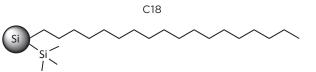
Silia <i>Prep</i> TMA Acetate nec SPE	Formats	
Formats	Qty/Box	SiliaPrep Product Number
Silia Prep Cartridges		
1 mL/50 mg	100	SPE-R66430B-01B
1 mL/100 mg	100	SPE-R66430B-01C
3 mL/200 mg	50	SPE-R66430B-03G
3 mL/500 mg	50	SPE-R66430B-03P
6 mL/500 mg	50	SPE-R66430B-06P
6 mL/1 g	50	SPE-R66430B-06S
6 mL/2 g	50	SPE-R66430B-06U
12 mL/2 g	20	SPE-R66430B-12U
25 mL/5 g	20	SPE-R66430B-20X
SiliaPrep Large Reservoir Volume SPE Cartr	idges	
10 mL/200 mg	50	SPC-R66430B-10G
10 mL/500 mg	50	SPC-R66430B-10P
Mini-SiliaPrep SPE Cartridges		
300 mg	50	SPS-R66430B-J
600 mg	50	SPS-R66430B-Q
900 mg	50	SPS-R66430B-R
SiliaPrep 96-Well Plates		
2 mL/50 mg	1	96W-R66430B-B
2 mL/100 mg	1	96W-R66430B-C

and Well Plates

Cartridg

Silia*Prep*[™] SPE

Separation of Acids Based on pKa Results						
Compounds	Salicylic Acid	Benzoic Acid	Phenol			
рКа	3.0	4.2	10.0			
Initial Amount (mg)	103	92	70			
Isolated Amount (mg)	102	88	65			
Recovery (%) ^a	99	96	93			


^aRecovery measured from isolated product

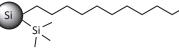
Silia
 Prep
 Reversed-Phases

Description

SiliaPrep C18

SiliCycle recently developed a new and innovative C18 phase characterized by a homogeneous coverage of the silane on the surface. Consequently the endcapping step is well controlled, improving the separation and inhibiting specific interactions with silanol groups (highly deactivated silanol phase). This strongly hydrophobic and non-polar sorbent is used to extract acidic, neutral and basic compounds from aqueous solutions, various organic compounds from water, and drugs and metabolites from physiological fluids.

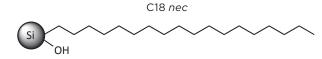



- SiliCycle Sorbent Number: R31930B
- Loading: 17 %C
- Endcapping: Yes
- Silica type: 60 Å, 500 m²/g, 40 63 μm

Description

SiliaPrep C18 (WPD)

This strongly hydrophobic, non-polar and highloading capacity sorbent is similar to SiliaPrep C18 but can accommodate larger molecules and untreated matrices.



- SiliCycle Sorbent Number: R33229G
- Loading: 13 %C
- Endcapping: Yes
- Silica type: 125 Å, 300 m²/g, 37 55 μm

Description

SiliaPrep C18 nec

This strongly hydrophobic and non-polar sorbent is similar to Silia*Prep* C18, but presents higher retention and polar selectivity for basic compounds. Unreacted surface OH's can be used for soft condition catch and release purification of glucoronides.

- SiliCycle Sorbent Number: R35530B
- Loading: 17 %C
- Endcapping: No
- Silica type: 60 Å, 500 m²/g, 40 63 μm

SiliaPrep Reversed-Phases C18

Silia <i>Prep</i> SPE Form	lats							
Formats	Qty/Box	Silia <i>Prep</i> C18	Silia <i>Prep</i> C18 WPD	SiliaPrep C18 nec				
SiliaPrep Cartridges	Silia <i>Prep</i> Cartridges							
1 mL/50 mg	100	SPE-R31930B-01B	SPE-R33229G-01B	SPE-R35530B-01B				
1 mL/100 mg	100	SPE-R31930B-01C	SPE-R33229G-01C	SPE-R35530B-01C				
3 mL/200 mg	50	SPE-R31930B-03G	SPE-R33229G-03G	SPE-R35530B-03G				
3 mL/500 mg	50	SPE-R31930B-03P	SPE-R33229G-03P	SPE-R35530B-03P				
6 mL/500 mg	50	SPE-R31930B-06P	SPE-R33229G-06P	SPE-R35530B-06P				
6 mL/1 g	50	SPE-R31930B-06S	SPE-R33229G-06S	SPE-R35530B-06S				
6 mL/2 g	50	SPE-R31930B-06U	SPE-R33229G-06U	SPE-R35530B-06U				
12 mL/2 g	20	SPE-R31930B-12U	SPE-R33229G-12U	SPE-R35530B-12U				
25 mL/5 g	20	SPE-R31930B-20X	SPE-R33229G-20X	SPE-R35530B-20X				
SiliaPrep Large Reservoir Vo	olume SPE Cartridges							
10 mL/200 mg	50	SPC-R31930B-10G	SPC-R33229G-10G	SPC-R35530B-10G				
10 mL/500 mg	50	SPC-R31930B-10P	SPC-R33229G-10P	SPC-R35530B-10P				
Mini-SiliaPrep SPE Cartridge	es							
300 mg	50	SPS-R31930B-J	SPS-R33229G-J	SPS-R35530B-J				
600 mg	50	SPS-R31930B-Q	SPS-R33229G-Q	SPS-R35530B-Q				
900 mg	50	SPS-R31930B-R	SPS-R33229G-R	SPS-R35530B-R				
SiliaPrep 96-Well Plates								
2 mL/50 mg	1	96W-R31930B-B	96W-R33229G-B	96W-R35530B-B				
2 mL/100 mg	1	96W-R31930B-C	96W-R33229G-C	96W-R35530B-C				

Silia <i>Prep</i> SPE Forr	nats				
Formats	Qty/Box	Silia <i>Prep</i> C18	Silia <i>Prep</i> C18 WPD	Silia <i>Prep</i> C18 nec	
SiliaPrep Cartridges					
1 mL/50 mg	100	SPE-R31930B-01B	SPE-R33229G-01B	SPE-R35530B-01B	
1 mL/100 mg	100	SPE-R31930B-01C	SPE-R33229G-01C	SPE-R35530B-01C	
3 mL/200 mg	50	SPE-R31930B-03G	SPE-R33229G-03G	SPE-R35530B-03G	
3 mL/500 mg	50	SPE-R31930B-03P	SPE-R33229G-03P	SPE-R35530B-03P	
6 mL/500 mg	50	SPE-R31930B-06P	SPE-R33229G-06P	SPE-R35530B-06P	
6 mL/1 g	50	SPE-R31930B-06S	SPE-R33229G-06S	SPE-R35530B-06S	
6 mL/2 g	50	SPE-R31930B-06U	SPE-R33229G-06U	SPE-R35530B-06U	
12 mL/2 g	20	SPE-R31930B-12U	SPE-R33229G-12U	SPE-R35530B-12U	
25 mL/5 g	20	SPE-R31930B-20X	SPE-R33229G-20X	SPE-R35530B-20X	
SiliaPrep Large Reservoir V	/olume SPE Cartridges				
10 mL/200 mg	50	SPC-R31930B-10G	SPC-R33229G-10G	SPC-R35530B-10G	
10 mL/500 mg	50	SPC-R31930B-10P	SPC-R33229G-10P	SPC-R35530B-10P	
Mini- Silia Prep SPE Cartridg	ges				
300 mg	50	SPS-R31930B-J	SPS-R33229G-J	SPS-R35530B-J	
600 mg	50	SPS-R31930B-Q	SPS-R33229G-Q	SPS-R35530B-Q	
900 mg	50	SPS-R31930B-R	SPS-R33229G-R	SPS-R35530B-R	
SiliaPrep 96-Well Plates					
2 mL/50 mg	1	96W-R31930B-B	96W-R33229G-B	96W-R35530B-B	
2 mL/100 mg	1	96W-R31930B-C	96W-R33229G-C	96W-R35530B-C	

Determination of Testosterone in Human Urine

General Procedure

- 1. Mini-SiliaPrep C18 (PN: SPS-R33229G-J) was conditioned with 5 mL of methanol and 5 mL of H₂O.
- 2. The urine sample (2 mL) was then slowly aspirated through the cartridge.
- 3. Cartridge was washed with 5 mL of H₂O and 5 mL of hexane.
- 4. Analyte was eluted with 5 mL of methanol.
- 5. The sample was evaporated under a nitrogen stream for 30 min at 40°C.
- 6. The analyte was derivatized using 800 QL of Girard-P (100 mM ammonium acetate buffer, pH 4.2) and 200 QL of methanol maintained at room temperature for 12 h.
- 7. Quantification was done using LC-MS/MS apparatus.

Testosterone Recovery Recovery (%)^a Testosterone lot #1 lot #2 OH 94 ± 2 96 ± 1

^aMean Recovery N = 3, 250 ng/mL

Silia
 Prep Reversed-Phase sorbents

Description

SiliaPrep C8

A moderately hydrophobic and non-polar sorbent used to extract extremely non-polar compounds. This phase is more selective than Silia*Prep* C18 for big compounds such as PAH, vitamin D, and oils as well as greasy compounds.

Description

SiliaPrep Phenyl

A moderately hydrophobic and non-polar sorbent used to extract non-polar compounds with different selectivities through π - π interactions including aromatic compounds and other non-polar phases.

Description

SiliaPrep Cyano

A moderately polar sorbent used as a normal phase (*less polar compared to silica*) to extract acidic, basic and neutral compounds from aqueous solutions. It is also used as a reversed-phase (*less hydrophobic than C8 and C18*).

- SiliCycle Sorbent Number: R31030B
- Loading: 12 %C
- Endcapping: Yes
- Silica Type: 60 Å, 500 m²/g, 40 63 μm
- SiliCycle Sorbent Number: R34030B
- Loading: 9 %C
- Endcapping: Yes
- Silica Type: 60 Å, 500 m²/g, 40 63 μm
- SiliCycle Sorbent Number: R38030B
- Loading: 7 %C
- Endcapping: Yes
- Silica Type: 60 Å, 500 m²/g, 40 63 μm

Formats	Qty/Box	Silia <i>Prep</i> C8	Silia <i>Prep</i> Phenyl	Silia <i>Prep</i> Cyano			
SiliaPrep Cartridges							
1 mL/50 mg	100	SPE-R31030B-01B	SPE-R34030B-01B	SPE-R38030B-01B			
1 mL/100 mg	100	SPE-R31030B-01C	SPE-R34030B-01C	SPE-R38030B-01C			
3 mL/200 mg	50	SPE-R31030B-03G	SPE-R34030B-03G	SPE-R38030B-03G			
3 mL/500 mg	50	SPE-R31030B-03P	SPE-R34030B-03P	SPE-R38030B-03P			
6 mL/500 mg	50	SPE-R31030B-06P	SPE-R34030B-06P	SPE-R38030B-06P			
6 mL/1 g	50	SPE-R31030B-06S	SPE-R34030B-06S	SPE-R38030B-06S			
6 mL/2 g	50	SPE-R31030B-06U	SPE-R34030B-06U	SPE-R38030B-06U			
12 mL/2 g	20	SPE-R31030B-12U	SPE-R34030B-12U	SPE-R38030B-12U			
25 mL/5 g	20	SPE-R31030B-20X	SPE-R34030B-20X	SPE-R38030B-20X			
SiliaPrep Large Reservoi	r Volume SPE Cartridges						
10 mL/200 mg	50	SPC-R31030B-10G	SPC-R34030B-10G	SPC-R38030B-10G			
10 mL/500 mg	50	SPC-R31030B-10P	SPC-R34030B-10P	SPC-R38030B-10P			
SiliaPrep 96-Well Plates	·						
2 mL/50 mg	1	96W-R31030B-B	96W-R34030B-B	96W-R38030B-B			
2 mL/100 mg	1	96W-R31030B-C	96W-R34030B-C	96W-R38030B-C			

Silia
 Prep Normal Phases

Description

SiliaPrep Silica

The most polar sorbent, which presents a slightly acidic character and is used to extract various compounds from non-polar solvents through hydrogen bonding. This sorbent is also used for the efficient

Description

SiliaPrep Florisil

A polar sorbent (MgO_3Si) presenting a basic character used to extract non-polar to moderately polar compounds from non-polar solvents. The magnesium ion allows retention of chlorinated

Description

Silia Prep Alumina-Acidic, Neutral and Basic

Alumina can present either cationic, neutral and acidic character. It is used in a similar fashion as for the Silia*Prep* Silica. The difference is that Alumina is more stable at high pH than silica. These sorbents present favorable retention of aromatic

Silia <i>Prep</i> SPE Formats						
Formats	Qty/Box	Silia <i>Prep</i> Silica	Silia <i>Prep</i> Florisil	Silia <i>Prep</i> Acidic Alumina	Silia <i>Prep</i> Neutral Alumina	Silia <i>Prep</i> Basic Alumina
Silia <i>Prep</i> Cartr	ridges					
1 mL/50 mg	100	SPE-R10030B-01B	SPE-AUT-0014-01B	SPE-AUT-0053-01B	SPE-AUT-0054-01B	SPE-AUT-0055-01B
1 mL/100 mg	100	SPE-R10030B-01C	SPE-AUT-0014-01C	SPE-AUT-0053-01C	SPE-AUT-0054-01C	SPE-AUT-0055-01C
3 mL/200 mg	50	SPE-R10030B-03G	SPE-AUT-0014-03G	SPE-AUT-0053-03G	SPE-AUT-0054-03G	SPE-AUT-0055-03G
3 mL/500 mg	50	SPE-R10030B-03P	SPE-AUT-0014-03P	SPE-AUT-0053-03P	SPE-AUT-0054-03P	SPE-AUT-0055-03P
6 mL/500 mg	50	SPE-R10030B-06P	SPE-AUT-0014-06P	SPE-AUT-0053-06P	SPE-AUT-0054-06P	SPE-AUT-0055-06P
6 mL/1 g	50	SPE-R10030B-06S	SPE-AUT-0014-06S	SPE-AUT-0053-06S	SPE-AUT-0054-06S	SPE-AUT-0055-06S
6 mL/2 g	50	SPE-R10030B-06U	SPE-AUT-0014-06U	SPE-AUT-0053-06U	SPE-AUT-0054-06U	SPE-AUT-0055-06U
12 mL/2 g	20	SPE-R10030B-12U	SPE-AUT-0014-12U	SPE-AUT-0053-12U	SPE-AUT-0054-12U	SPE-AUT-0055-12U
25 mL/5 g	20	SPE-R10030B-20X	SPE-AUT-0014-20X	SPE-AUT-0053-20X	SPE-AUT-0054-20X	SPE-AUT-0055-20X
SiliaPrep Large	e Reservo	ir Volume SPE Cartri	dges			
10 mL/200 mg	50	SPC-R10030B-10G	SPC-AUT-0014-10G	SPC-AUT-0053-10G	SPC-AUT-0054-10G	SPC-AUT-0055-10G
10 mL/500 mg	50	SPC-R10030B-10P	SPC-AUT-0014-10P	SPC-AUT-0053-10P	SPC-AUT-0054-10P	SPC-AUT-0055-10P
Mini-Silia <i>Prep</i>	SPE Cartr	idges				
300 mg	50	SPS-R10030B-J	SPS-AUT-0014-J	SPS-AUT-0053-J	SPS-AUT-0054-J	SPS-AUT-0055-J
600 mg	50	SPS-R10030B-Q	SPS-AUT-0014-Q	SPS-AUT-0053-Q	SPS-AUT-0054-Q	SPS-AUT-0055-Q
900 mg	50	SPS-R10030B-R	SPS-AUT-0014-R	SPS-AUT-0053-R	SPS-AUT-0054-R	SPS-AUT-0055-R
SiliaPrep 96-Well Plates						
2 mL/50 mg	1	96W-R10030B-B	96W-AUT-0014-B	N.A.	N.A.	N.A.
2 mL/100 mg	1	96W-R10030B-C	96W-AUT-0014-C	N.A.	N.A.	N.A.

separation of analytes with similar structures and for removing the baseline noise from organic samples.

- SiliCycle Sorbent Number: R10030B
- + Silica Type: 60 Å, 500 m²/g, 40 63 μm
- ter pesticides, polychlorinated biphenyl (*PCB's*) and polysaccharides.
 - SiliCycle Sorbent Number: AUT-0014

compounds, aliphatic amines and compounds containing electronegative functions.

- SiliCycle Sorbent Number: Acidic: AUT-0053, Neutral: AUT-0054, Basic: AUT-0055
- + Alumina Type: 60 Å, 0.9 g/mL, 50 200 μm

SiliaPrep Ion Exchange Phases

Description

SiliaPrep TMA Chloride (Si-SAX)

Strong anion exchanger sorbent positively charged under all conditions. Used to extract acidic molecules (pKa 3 - 5).

Description

SiliaPrep Carboxylic Acid (Si-WCX)

A weak cation exchanger sorbent used to extract strong basic compounds (pKa > 9).

Description

Silia
 Prep Amine (Si-WAX)

A weak anion exchanger used instead of a strong anion exchanger for strong anions, thus avoiding irreversible retention (*acidic molecules pKa < 3*). This sorbent is utilized in different applications such as the separation of peptides, drugs and metabolites from physiological fluids, poly- and monosaccharides and structural isomers.

• SiliCycle Sorbent Number: R66530B

- Loading: 1.1 mmol/g
- Endcapping: No
- Silica Type: 60 Å, 500 m²/g, 40 63 μm
- SiliCycle Sorbent Number: R70030B
- Loading: 1.4 mmol/g
- Endcapping: Yes
- Silica Type: 60 Å, 500 m²/g, 40 63 μm
- SiliCycle Sorbent Number: R52030B
- Loading: 1.6 mmol/g
- Endcapping: Yes
- Silica Type: 60 Å, 500 m²/g, 40 63 μm

96W-R70030B-C

96W-R52030B-C

Silia <i>Prep</i> SPE Formats							
Formats	Qty/Box	SiliaPrep TMA Chloride	SiliaPrep Carboxylic Acid	Silia <i>Prep</i> Amine			
Silia <i>Prep</i> Cartridges							
1 mL/50 mg	100	SPE-R66530B-01B	SPE-R70030B-01B	SPE-R52030B-01B			
1 mL/100 mg	100	SPE-R66530B-01C	SPE-R70030B-01C	SPE-R52030B-01C			
3 mL/200 mg	50	SPE-R66530B-03G	SPE-R70030B-03G	SPE-R52030B-03G			
3 mL/500 mg	50	SPE-R66530B-03P	SPE-R70030B-03P	SPE-R52030B-03P			
6 mL/500 mg	50	SPE-R66530B-06P	SPE-R70030B-06P	SPE-R52030B-06P			
6 mL/1 g	50	SPE-R66530B-06S	SPE-R70030B-06S	SPE-R52030B-06S			
6 mL/2 g	50	SPE-R66530B-06U	SPE-R70030B-06U	SPE-R52030B-06U			
12 mL/2 g	20	SPE-R66530B-12U	SPE-R70030B-12U	SPE-R52030B-12U			
25 mL/5 g	20	SPE-R66530B-20X	SPE-R70030B-20X	SPE-R52030B-20X			
SiliaPrep Large Reservoir	Volume SPE Cartridges						
10 mL/200 mg	50	SPC-R66530B-10G	SPC-R70030B-10G	SPC-R52030B-10G			
10 mL/500 mg	50	SPC-R66530B-10P	SPC-R70030B-10P	SPC-R52030B-10P			
Mini-SiliaPrep SPE Cartric	lges						
300 mg	50	SPS-R66530B-J	SPS-R70030B-J	SPS-R52030B-J			
600 mg	50	SPS-R66530B-Q	SPS-R70030B-Q	SPS-R52030B-Q			
900 mg	50	SPS-R66530B-R	SPS-R70030B-R	SPS-R52030B-R			
SiliaPrep 96-Well Plates							
2 mL/50 mg	1	96W-R66530B-B	96W-R70030B-B	96W-R52030B-B			

96W-R66530B-C

Silia
 Prep Mixed Mode Phases

Description

SiliaPrep C8/Tosic Acid

SiliaPrep C8/Propylsulfonic Acid

These sorbents are used to extract basic compounds from aqueous solutions, typically drugs and metabolites from physiological fluids.

- SiliCycle Sorbent Number: C8/SCX: R023830B and C8/SCX-2: R028030B
- Endcapping: Yes
- Silica Type: 60 Å, 500 m²/g, 40 63 μm

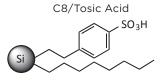
Description

SiliaPrep Tosic Acid/TMA Chloride

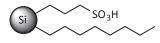
This sorbent is typically used for the separation of acidic and basic molecules from non-ionizable molecules.

- SiliCycle Sorbent Number: R802830B
- Endcapping: Yes
- Silica Type: 60 Å, 500 m²/g, 40 63 μm

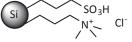
Silia <i>Prep</i> SPE Formats								
Formats	Qty/Box	Silia <i>Prep</i> C8/SCX	Silia <i>Prep</i> C8/SCX-2	SiliaPrep SCX/SAX				
Silia <i>Prep</i> Cartridges								
1 mL/50 mg	100	SPE-R023830B-01B	SPE-R028030B-01B	SPE-R802830B-01B				
1 mL/100 mg	100	SPE-R023830B-01C	SPE-R028030B-01C	SPE-R802830B-01C				
3 mL/200 mg	50	SPE-R023830B-03G	SPE-R028030B-03G	SPE-R802830B-03G				
3 mL/500 mg	50	SPE-R023830B-03P	SPE-R028030B-03P	SPE-R802830B-03P				
6 mL/500 mg	50	SPE-R023830B-06P	SPE-R028030B-06P	SPE-R802830B-06P				
6 mL/1 g	50	SPE-R023830B-06S	SPE-R028030B-06S	SPE-R802830B-06S				
6 mL/2 g	50	SPE-R023830B-06U	SPE-R028030B-06U	SPE-R802830B-06U				
12 mL/2 g	20	SPE-R023830B-12U	SPE-R028030B-12U	SPE-R802830B-12U				
25 mL/5 g	20	SPE-R023830B-20X	SPE-R028030B-20X	SPE-R802830B-20X				
SiliaPrep Large Reservoir	Volume SPE Cartridges			• •				
10 mL/200 mg	50	SPC-R023830B-10G	SPC-R028030B-10G	SPC-R802830B-10G				
10 mL/500 mg	50	SPC-R023830B-10P	SPC-R028030B-10P	SPC-R802830B-10P				
SiliaPrep 96-Well Plates								
2 mL/50 mg	1	96W-R023830B-B	96W-R028030B-B	96W-R802830B-B				
2 mL/100 mg	1	96W-R023830B-C	96W-R028030B-C	96W-R802830B-C				



2 mL/100 mg


1

188


Silia*Prep*[™] SPE Cartridges and Well Plates

C8/Propylsulfonic Acid

Tosic Acid/TMA Chloride

Silia Prep Clean DRUG

Description

SiliaPrep CleanDRUG:

SiliaPrep CleanDRUG, a new line of solid phase extraction (SPE) products, is designed to extract specific analytes with more reproducibility and efficiency when using sensitive detectors. This product was developed, tested, and quality controlled for drugs of abuse applications.

- SiliCycle Sorbent Number: R651230B
- Silica Type: 60 Å, 500 m²/g, 40 63 μm

Easy SPE Method for Drugs of Abuse Determination in Human Urine

General Procedure

- 1. Sample (0.5 mL) is mixed with 2.5 mL of aqueous H_2SO_4 (0.1 M).
- 2. SiliaPrep CleanDRUG (*PN: SPE-R651230B-03G*) is conditioned with 2 column volumes of methanol, then 2 column volumes of aqueous H₂SO₄ (0.1 M).
- 3. Slowly force or aspirate the sample of urine through the cartridge.
- 4. Wash the cartridge with 3 mL of phosphate buffer $(KH_2PO_4/K_2HPO_4 pH = 7.0)$, then with 3 mL of aqueous H_2SO_4 0.1 M, and finally with 3 mL of methanol.
- 5. Analyte is eluted with 2 x 3 mL of aqueous NH_4OH (5% v/v).
- 6. Sample is evaporated under a nitrogen stream and, reconstituted with distilled water and methanol (9:1 v/v). Finally, the quantification is done using LC-MS apparatus.

SiliaPrep CleanDRUG SPE Formats						
Formats	Qty/Box	SiliaPrep Product Number				
SiliaPrep Cartridges						
1 mL/50 mg	100	SPEC-R651230B-01B				
1 mL/100 mg	100	SPEC-R651230B-01C				
3 mL/200 mg	50	SPEC-R651230B-03G				
3 mL/500 mg	50	SPEC-R651230B-03P				
6 mL/500 mg	50	SPEC-R651230B-06P				
6 mL/1 g	50	SPEC-R651230B-06S				
6 mL/2 g	50	SPEC-R651230B-06U				
12 mL/2 g	20	SPEC-R651230B-12U				
25 mL/5 g	20	SPEC-R651230B-20X				

C H

Drugs of Abuse Recovery							
Drugs			NH ₂				
Recovery (%) ^a	96	98	99				

^aMean Recovery N = 2, 10 mg/mL to 100 mg/mL

SiliaChrom® IPLC Columns

SiliaChrom HPLC Columns

Using Silia*Chrom* HPLC Columns in chromatographic applications ensures the following:

- Excellent column efficiency
- Long lifetime and column-to-column reproducibility
- Broad pH range from 0.8 to 12
- Compatibility with 100% aqueous and organic mobile phases
- High surface coverage presenting no bleeding for LC-MS applications

Presentation of the SiliaChrom HPLC Column Series

SiliCycle manufactures a variety of HPLC columns for reversed and normal phase applications. The Silia*Chrom* series contain more than 40 different phases, and we continue to develop additional, unique and powerful HPLC sorbents. Most of the Silia*Chrom* products are based on silica. You can be assured of the quality, from raw material synthesis through to the packing process.

We pack bonded phases in a wide range of column dimensions, including standard narrowbore and analytical columns in lengths of 30 to 250 mm, internal diameters of 2.0-4.6 mm, with particle sizes of 2.5, 3.0, 5.0 or 10.0 µm. Also, preparative and semipreparative HPLC columns are available, in 10, 20, 30 and 50 mm ID with lengths of 50, 100, 150 and 250 mm with particle sizes of 5 and 10 μ m. This new product line is designed for the most popular HPLC applications. These columns exhibit superior

performance for any type of compound. The SiliaChrom series, with its unique solgel process technology, offers the total solution for HPLC end-users: broad pH range (0.8 - 12), compatibility with 100% aqueous and organic mobile phases, low bleeding for LC-MS, high surface coverage, and excellent column efficiency. All columns are packed using a consistent slurry packing process to achieve an uniform and stable bed for long lifetime and column-to-column reproducibility.

SiliaChrom HPLC columns

How to build your Part Number

Silia*Chrom* HPLC columns are available in Narrow Bore, Analytical, Semi-Preparative, and Preparative formats.

Here is an example of a Silia*Chrom* product number that shows you the way they are structured;

The product numbers start with the **phase** code, followed by the particle size, the pore size, the internal diameter, and finally the length codes.

Note: For Guard Columns, add the letter "G" between the "H" and the phase code.

Example;

Silia*Chrom* AQ C18, 3 μm, 100 Å, 4.6 mm x 150 mm = H151803E-N150

Partic	le Size	Pore S	Size
μm	Code	Å	Code
2.5	02	100	(E)
3.0	03	120	G
5.0	\$5	150	/н
7.0	06	300	/ м
10	07		/
20	09	_ /	
Particle Size		Pore Size	

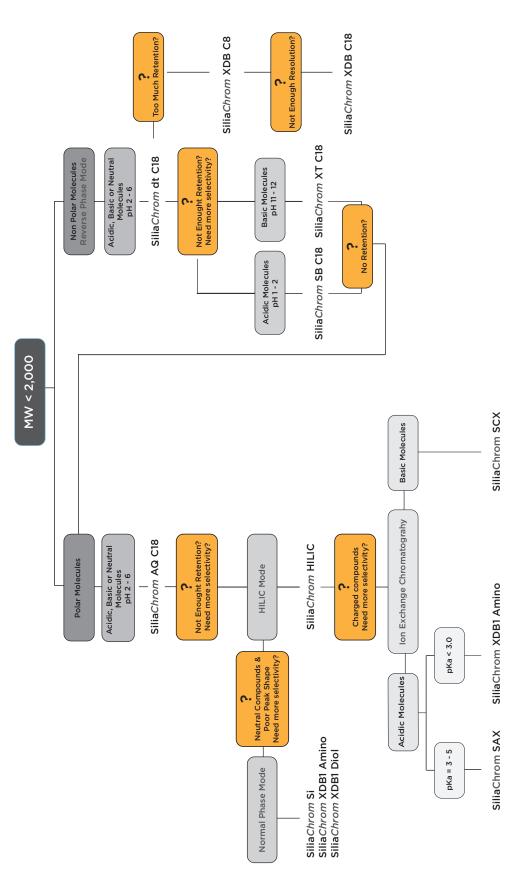
Internal Diame	ter		Colum
Type of Columns	mm	Code	mm
Narrow Bore	2.1	G	10
Narrow Bore	3.0	Н	20
Analytical	4.6	(N)	30
Semi-Preparative	10	A	50
Preparative	20	Υ	100
Preparative	30	/ v	150
Preparative	50	W	200
Preparative	100	Х	250
Interna	l Diameter		

ength Code

Column Length

*You may also find and buy your SiliaChrom online at www.silicycle.com/products/siliachrom-hplc-columns

Silia <i>Chrom</i> HPLC co				Card			_		
SiliaChrom	Pore size (Å)	Particle size (µm)	Specific Surface area (m²/g)	Carbon Load (%)	pH range	UPS Code	T Limit* (°C)	Pressure Limit (psi)	Pha: Coc
SiliaChrom AQ C18	100	3, 5, 10	380	18	1.5 - 9.0	L01	60	5,000	H15
Silia <i>Chrom</i> AQ C8	100	3, 5, 10	380	14	1.5 - 8.5	L07	60	5,000	H150
Silia <i>Chrom</i> dt C18	100	2.5, 3, 5, 10	410 - 440	18	1.5 - 9.0	L01	60	5,000	H14
Silia <i>Chrom</i> dt Si	100	2.5, 3, 5, 10	410 - 440	NA	1.0 - 8.0	LO3	45	4,500	H14
SiliaChrom XT C18	150	5, 10	200	15	1.5 - 12.0	L01	60	5,000	H17
SiliaChrom XT Fidelity C18	100	3, 5, 10	380	21	1.5 - 12.0	L01	60	5,000	HF1
SiliaChrom SB C18	150	3, 5, 10	200 - 220	12	0.8 - 7.5	L01	60	4,500	H1C
SiliaChrom SB C18-300	300	3, 5, 10	80	5	0.8 - 7.5	L01	60	4,500	H1C
SiliaChrom SB C8	150	3, 5, 10	200 - 220	7	1.0 - 7.5	L07	60	4,500	H10
SiliaChrom SB C8-300	300	3, 5, 10	80	3	1.0 - 7.5	L07	60	4,500	H10
SiliaChrom XDB C18	150	3, 5, 10	200	15	1.5 - 9.0	L01	60	5,500	H11
SiliaChrom XDB C8	150	3, 5, 10	200	8	1.5 - 9.0	L07	60	5,500	H11
SiliaChrom XDB Si	150	3, 5, 10	200	NA	1.0 - 8.0	L03	45	4,000	H110
SiliaChrom XDB1 C18	100	3, 5, 10	380 - 400	22	1.5 - 10.0	L01	60	5,500	H12
SiliaChrom XDB1 C18-300	300	3, 5, 10	80	8	1.5 - 9.0	L01	60	5,500	H12
SiliaChrom XDB1 C8	100	3, 5, 10	380 - 400	14	1.5 - 8.5	L07	60	5,500	H12
SiliaChrom XDB1 C8-300	300	3, 5, 10	80	4	1.5 - 8.5	L07	60	5,500	H12
SiliaChrom XDB1 C4	100	3, 5, 10	380 - 400	7	1.5 - 8.5	L26	60	5,500	H12
SiliaChrom XDB1 C4-300	300	3, 5, 10	80	3	2.0 - 8.0	L26	60	5,500	H12
SiliaChrom XDB1 C1	100	3, 5, 10	380 - 400	3	1.5 - 8.5	L13	60	5,500	H12
SiliaChrom XDB1 C1-300	300	3, 5, 10	80	1	2.0 - 8.0	L13	60	5,500	H12
SiliaChrom XDB1 CN	100	3, 5, 10	380 - 400	5	2.0 - 8.5	L10	60	5,500	H12
SiliaChrom XDB1 CN-300	300	3, 5, 10	80	3.5	2.0 - 8.0	L10	60	5,500	H12
SiliaChrom XDB1 Amino	100	3, 5, 10	380 - 400	7	2.0 - 8.5	L08	45	5,500	H12
SiliaChrom XDB1 Amino-300	300	3, 5, 10	80	3.5	2.0 - 8.0	L08	45	5,500	H12
SiliaChrom XDB1 Phenyl	100	3, 5, 10	380 - 400	12	1.5 - 9.0	L11	60	4,000	H12
SiliaChrom XDB1 Phenyl-300	300	3, 5, 10	80	4.5	2.0 - 8.0	L11	60	4,000	H12
SiliaChrom XDB1 Diol	100	3, 5, 10	380 - 400	5	2.0 - 8.0	-	45	4,000	H12
SiliaChrom XDB1 Diol-300	300	5, 10	380 - 400	1	2.0 - 8.0	-	45	4,000	H12
SiliaChrom XDB1 Si	100	3, 5, 10	380 - 400	NA	1.0 - 8.0	LO3	45	4,000	H12
SiliaChrom XDB1 Si-300	300	3, 5, 10	80	NA	2.0 - 8.0	LO3	45	4,000	H12
SiliaChrom XDB2 C18	100	3, 5, 10	380	18	1.5 - 9.0	L01	60	5,000	H13
SiliaChrom SCX	100	3, 5, 10	380	10	2.0 - 8.5	L09	45	5,000	H18
SiliaChrom SCX-300	300	5, 10	80	3.5	2.0 - 8.0	L09	45	5,000	H18
SiliaChrom SAX	100	3, 5, 10	380	6	2.0 - 8.5	L14	45	5,000	H19
SiliaChrom SAX-300	300	5, 10	80	1	2.0 - 8.0	L14	45	5,000	H19
SiliaChrom HILIC	100	3, 5, 10	380	8	2.0 - 8.0	-	60	5 000	H16
SiliaChrom HILIC-300	300	3, 5, 10	80	2.5	2.0 - 8.0	-	60	5,000	H16


phase code

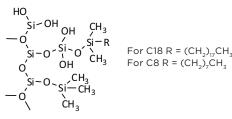
TEL.: 1418 874.0054 FAX: 1418 874.0355 TOLL-FREE: 1877.SILICYCLE (NORTH AMERICA ONLY) WWW.SILICYCLE.COM INFO@SILICYCLE.COM

Cross-References SiliaChrom HPLC columns

iliCycle HPLC Column	Applications	Equivalent to the commercial phase:
Silia <i>Chrom</i> AQ C18	Ideal for analytes that require more than 90% of water (<i>Buffer</i>)	Zorbax SB Aq, Atlantis dC18, YMC-PACK ODS-AQ
Silia <i>Chrom</i> dt C18	Universal C18 for most popular applications (<i>highest purity of silica gel</i>)	Inertsil ODS-3, Atlantis T3
SiliaChrom XT C18	Excellent durability for high pH Ideal for basic compounds	Gemini, Waters Xterra C18
Silia <i>Chrom</i> XT Fidelity C18	Excellent durability to high pH. Ideal for very polar analytes	Waters X-Bridge C18
Silia <i>Chrom</i> SB C18	Ideal for MS and ELSD of neutral to slightly polar analytes	Zorbax SB C18
Silia <i>Chrom</i> SB C8	Selectivity and peak shape similar to Zorbax SB C8	Zorbax SB C8
Silia <i>Chrom</i> XDB C18	Ideal for barbiturates, fat-soluble vitamins, fatty acids, steroids	Zorbax XDB C18, Discovery C18
SiliaChrom XDB C8	Selectivity and peak shape similar to Zorbax XDB C8	Zorbax XDB C8, Discovery C8
SiliaChrom XDB1 C18	Hydrophobic C18 phase suitable for analysis of wide range of compounds	Luna C18, Ascentis C18, Symmetry C18, Alltima HP C18 HiLoad
SiliaChrom XDB1 C8	Selectivity and peak shape similar to Sunfire C8, Luna C8 and Ascentis C8	Sunfire C8, Luna C8, Ascentis C8, Symmetry C8
SiliaChrom XDB1 CN	Excellent for basic pharmaceuticals, steroids and other basic compounds	Luna CN, Zorbax SB CN
Silia <i>Chrom</i> XDB1 Amino	Superior general purpose amino phase. Ideal for carbohy- drates	Luna NH ₂
SiliaChrom XDB1 Phenyl	Ideal for polynuclear aromatic hydrocarbons, putines and polar aromatics	Zorbax SB Phenyl
SiliaChrom XDB1 Diol	Excellent for normal phase applications with more hydropho- bic activity	Nucleosil Diol, Luna Diol
SiliaChrom XDB1 Si	Ideal for normal phase applications	Luna Silica
SiliaChrom XDB2 C18	Perfect peak symmetry for acidic, basic and neutral compounds	Luna C18 (2), Sunfire C18
SiliaChrom SCX	Ideal for charged analytes	Luna SCX
SiliaChrom SAX	Ideal for charged analytes	Agilent SB-SAX
SiliaChrom HILIC	Ideal for MedChem laboratories Isolation of very polar analytes	Unique

SiliaChrom Selection Guide

196


SiliaChrom AQ C8 and AQ C18

Description

Universal 100% aqueous-compatible HPLC columns

SiliaChrom AQ adsorbents present an optimum ratio of C18 (C8) short TMS chains and some free silanol groups. This new technology shows good peak shapes for any type of molecule (acid, neutral and base).

Structure

SiliaChrom AQ C18

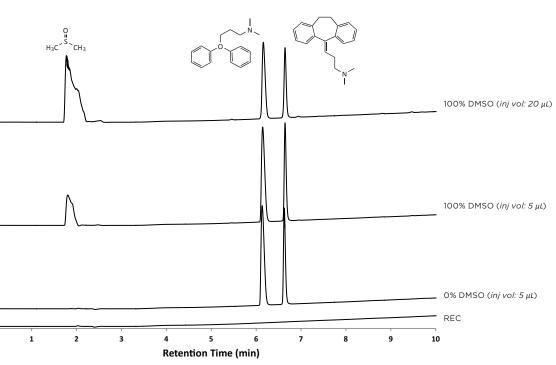
SiliaChrom AQ C8

Dewetting Phenomena

Sorbent Characteristics

- Pore Size: 100 Å
- Specific Surface Area: 380 m²/g
- Particles Sizes Available: 3, 5 and 10 μm
- Typical Carbon Loading: SiliaChrom AQ C18 18% SiliaChrom AQ C8 14%

SiliaChrom AQ Main Characteristics

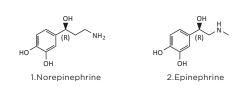

- Exceptional stability at pH 1.5 to 9.0
- · Inertness for acidic and basic analytes
- Compatible from 100% aqueous mobile phase to 100% organic
- Rapid equilibration
- · Reduced need for mobile phase modifiers
- Partially endcapped

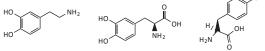
Retention Capacity of DMSO on SiliaChrom AQ C18

DMSO (DimethylSulfoxide) is an excellent solvent to solubilize most compounds. Unfortunately, this solvent is not volatile and in some C18 columns the DMSO can interact with the stationary phase and create a loss of selectivity. In this case, the only way to inhibit this effect is to use preparative chromatography. In this study, we show that DMSO does not interact with our SiliaChrom AQ C18. For this study, a linear gradient has been used from a highly aqueous mobile phase to a highly organic phase.

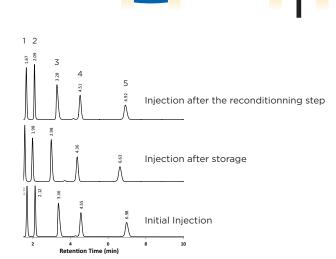
Chromatographic conditions

- Column: SiliaChrom AQ C18, 5 μm
- Column size: 4.6 x 150 mm
- SiliCycle P/N: H151805E-N150
- Mobile phase: MPA 0.1% formic acid in water MPB 0.1% formic acid in ACN
- Temperature: 23°C
- Flow rate: 1.000 mL/min
- Detector: UV at 254 nm
- Reconstitution solution (REC): DMSO

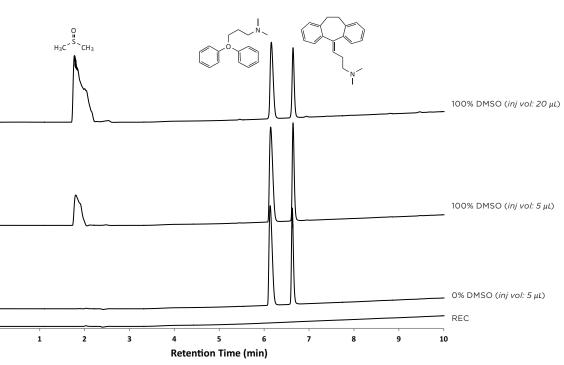

The dewetting phenomena is the formation of drops on the solid surface caused by hydrophobic repulsions of the highly hydrophobic sorbents. This phenomena is illustrated, shown by the following scheme.


General procedure

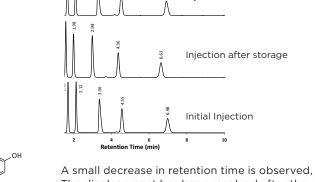
- The mixture of catecholamines is eluted on the column
- The flow is then stopped
- The column is stored in this condition during 18 h
- The mixture is then re-injected after a reconditioning step


Chromatographic conditions

- Column: SiliaChrom AQ C18, 5 μm
- Column size: 4.6 x 150 mm
- SiliCycle P/N: H151805E-N150
- Mobile phase: 1% AcOH in water
- Temperature: 23°C
- Flow rate: 1.000 mL/min
- Detector: UV at 265 nm
- Injection volume: 5 μL



4.Levodopa



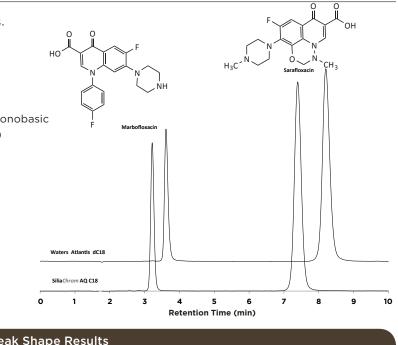
A small decrease in retention time is observed, but is not significant. The displacement has been resolved after the reconditioning step. The SiliaChrom AQ C18 does not present the dewetting phenomena.

Statistic Analysis Results							
Conditions	As _{DMSO}	Tr _{DMSO} (min)	K' _{DMSO}	W _{DMSO}	Tr _{diphenhydramine} (min)	Tr _{amitriptyline} (min)	
0% DMSO 5 μL	-	-	-	-	6.14	6.63	
100% DMSO 5 μL	2.29	1.80	0.09	0.3	6.15	6.64	
100% DMSO 20 μL	4.10	1.78	0.08	0.5	6.16	6.64	

Conclusion: The study shows that DMSO does not interact with the Silia*Chrom* AQ C18. No specific retention is observed. The SiliaChrom AQ C18 is an excellent choice to purify components contaminated with DMSO.

SiliaChrom® HPLC Columns

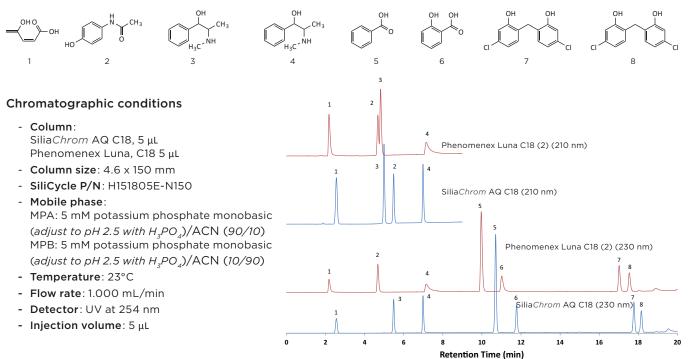
5.Tyrosine


Gradient		
Time (min)	% MPA	% MPB
0	90	10
9	10	90
10	10	90
11	90	10

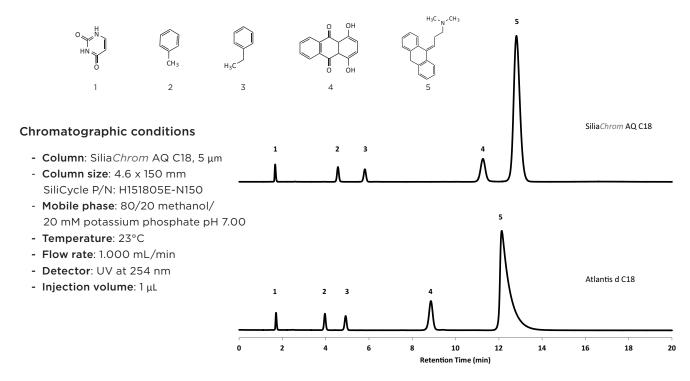
Peak Shape Evaluation for Zwetterion Fluoroguinolones

High separation power for zwetterion analysis.

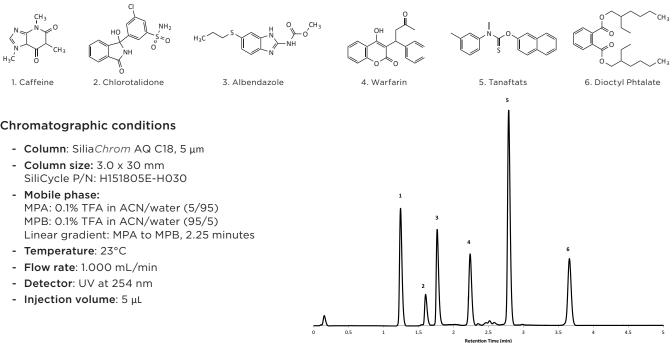
Chromatographic conditions


- Column: SiliaChrom AQ C18, 5 μm
- Column size: 4.6 x 150 mm
- SiliCycle P/N: H151805E-N150
- Mobile phase: 2.5 mM potassium phosphate monobasic (adjust to pH 2.5 with H_3PO_4)/ethanol (68/32)
- Temperature: 23°C
- Flow rate: 1.000 mL/min
- Detector: UV at 275 nm
- Injection volume: 10 µL

Peak Shape Results							
Product	Asymmetry (USP) Silia <i>Chrom</i> AQ C18	Asymmetry (USP) Atlantis dC18					
Marbofloxacin	1.12	1.29					
Sarafloxacin	1.09	1.14					


Evaluation of Resolution and Peak Shape

The AQ C18 column is universal, efficient even for mixtures of basic and acidic compounds.

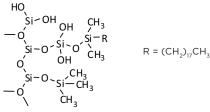

Silia*Chrom* AQ C18 for Basic Compounds

Amitriptyline, a strong basic compound, can be adsorbed on residual silanols on the surface of the packing material. With the traditional endcapping technique, this results in poor peak shapes. SiliCycle has developed a new method of silanol deactivation to eliminate the peak tailing from adsorption of compounds on residual silanol groups. This enables highly qualitative and quantitative analysis of strong basic compounds.

Rapid HPLC with SiliaChrom AQ C18 - Multi-Component Sample

Indispensable for pharmaceutical quality control, conjugate efficiency and rapidity.

Chromatographic conditions


Silia*Chrom* dt C18

Description

Universal 100% aqueous compatible HPLC columns.

The modified surface chemistry of **Silia***Chrom* **AQ** and **Silia***Chrom* **dt** columns is identical but the silica framework does not present any metals in the dt sorbent.

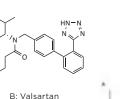
SiliaChrom AQ purity: 99.999% SiO2

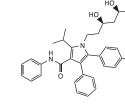
Silia*Chrom* **dt Purity:** 99.9999% SiO₂ (*no metal content*)

SiliaChrom dt C18

Sorbent Characteristics

- Pore Size: 100 Å
- Specific Surface Area: 410 440 m²/g
- + Particle Sizes Available: 2.5, 3, 5 and 10 μm
- Typical Carbon Loading: SiliaChrom dt C18 18%


SiliaChrom dt Main Characteristics


- Enhances retention of hydrophilic molecules
- Low bleeding and high sensitivity for LC-MS
- Extremely low metal content level (< 10 ppm)
- Good tolerance for direct injection of biological matrix (*dirty samples*)
- Higher surface area
- Partially endcapped

Assay for QC Testing of Blood Pressure and Cholesterol Medication

The Silia*Chrom* dt C18 presents a high lot-to-lot reproducibility, which makes it an excellent choice for quality control analysis in phamaceutical laboratories.

C: Atorvastatin

Ropinirole and Amitriptyline Detection in Human Plasma

Silia*Chrom* dt C18 presents low bleeding and is excellent for dirty samples. Partial endcapping allows for some interactions with free silanol groups. The use of Silia*Prep* CleanDRUG prior to injection onto the column insure a very clean sample witch results in very low ionic suppression when using in LC-MS/MS analysis. Another big advantage is the high selectivity of Silia*Chrom* dt C18 at all concentration levels.

Chromatographic conditions

- Column: Silia*Chrom* dt C18, 2.5 μm
- Column size: 3.0 x 30 mm SiliCycle P/N: H141802E-H030

Sample prepared by SPE Silia*Prep* CleanDRUG 3 mL/500 mg PN: SPEC-R651230B-03G

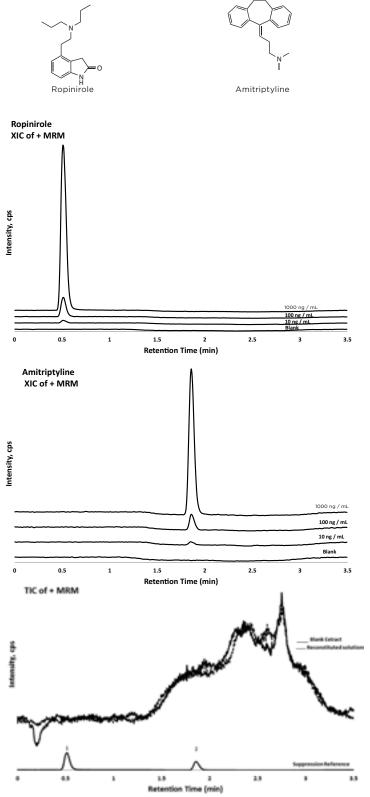
- Mobile phase:

MPA: 1 mM ammonium formate in (*ACN/water, 10/90*), 0.1% formic acid (*v/v*) MPB: 1 mM ammonium formate in (*ACN/water, 90/10*), 0.1% formic acid (*v/v*)

Gradient						
Time (min)	MPA (%)	MPB (%)	Flow (mL/min)			
0.00 - 0.20	85	15	1.000			
0.21 - 1.20	50	50	1.000			
1.21 - 1.60	0	100	1.000			
1.61 - 3.50	85	15	1.000			

- Temperature: 23°C
- Flow rate: 1.000 mL/min
- MS splitting flow: 0.30 mL/min
- Injection volume: 5 µL

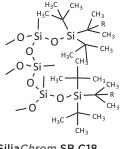
Tandem mass spectroscopy conditions


- Detector: Sciex API 3000, Applied Biosystem
- Ion Source: Positive Electrospray (ES/+)
- Turbolon Ion Spray heater gas flow: 8000 cc/min
- Turbolon Ion Spray heater temperature: 375°C
- MRM Transition: Ropinirole: m/z $(261.2 \rightarrow 114.2)$ Amitriptyline: m/z $(278.4 \rightarrow 233.1)$

Chromatographic conditions

- Column: Silia*Chrom* dt C18, 5 μm
- Column size: 4.6 x 150 mm SiliCycle P/N: H141802E-N150
- Mobile phase: Methanol/H O (70/30)
- Methanol/ H_2O (70/30), 0.1% (v/v) formic acid - Temperature: 30°C
- Flow rate: 0.800 mL/min
- Detector: UV at 280 nm
- Injection volume: 10 µL

202



SiliaChrom SB C18 and C8

Description

SiliaChrom SB C18 and C8 surfaces are treated with an organic form of silicon to increase the number of silanol groups on the surface. After this step, the surface is bonded with a silane containing two functions. One function is a protecting group that shields the area and protects the surface from an acid attack from the mobile phase. The ion H_3O^+ does not have access to the surface to break the O-Si bond (*steric effect*). The other function is the linear hydrophobic chain with 18 or 8 carbons.

Structure

For C18 R = $(CH_2)_{17}CH_3$ For C8 R = $(CH_2)_7CH_3$

SiliaChrom SB C18 SiliaChrom SB C8

Sorbent Characteristics

- Pore Size: 100 Å
- Specific Surface Area: 200 220 m²/g
- Particle Sizes Available: 3, 5 and 10 μm
- Typical Carbon Loading: SiliaChrom SB C18 12%
 SiliaChrom SB C8 7%

SiliaChrom SB Main Characteristics

- Extremely low pH limits (0.5 7.5)
- Extremely low bleeding for LC-MS applications under acidic conditions
- Compatible with mobile phases ranging 100% aqueous to 100% organic
- Non endcapped

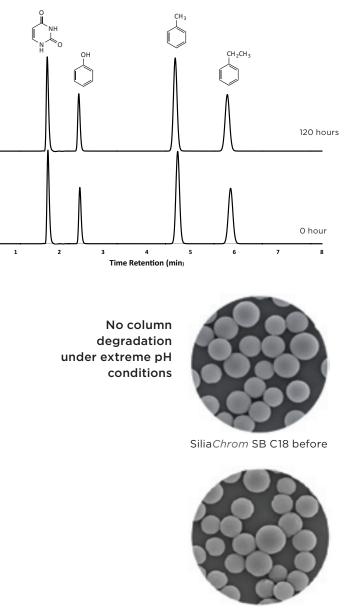
Stability of SiliaChrom SB C18 at Low pH Conditions

Acidic mobile phases have widespread applications in the reversed phase HPLC separation of many important pharmaceutical and environmental compounds. Analytes such as pharmaceuticals and biomolecules often show peak shape, retention and selectivity changes when the mobile phase pH is changed from neutral to acidic pH (pH1.0). In fact, lowering the pH helps to suppress silanol interactions between basic compounds and the residual surface silanols, thus resulting in less tailing and better retention of acidic compounds (pKa lower than 2).

Chromatographic conditions

- Column: SiliaChrom SB C18, 5 μm
- Column size: 4.6 x 150 mm
- SiliCycle P/N: H101805H-N150
- Mobile phase: 2% TFA in ACN/water (60/40) Solution pH: 1.00
- Temperature: 23°C
- Flow rate: 1.000 mL/min
- Detector: UV at 270 nm
- Injection volume: 10 µL

SiliaChrom SB C18 (Ethylbenzene)					
Time (hour)	RT (min)	TF (USP)	N (USP)		
0	5.91	1.01	14,014		
24	5.89	1.02	14,085		
48	5.77	1.02	14,023		
72	5.83	1.02	14,076		
96	5.85	1.01	14,087		
120	5.84	1.02	14,050		
Mean	5.85	1.02	14,056		
RSD (%)	0.84	0.51	0.23		

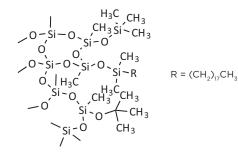

The HPLC column was used under extreme pH conditions and, even after 5 days of continuous injections, the number of theoretical plates (N), the tailing factor (TF) and the retention times (RT) are comparable. The sorbent kept its chemical and structural integrity, which we have proven with similar chromatograms and scanning electron microscope pictures (*SEM*) before and after 120 hours of use.

In conclusion, our Silia*Chrom* SB C18 and SB C8 columns are stable at low pH conditions.

204

SiliaChrom SB C18 after

SiliaChrom XT C18 and XT C18 Fidelity


Description

SiliaChrom XT C18 and XT C18 Fidelity are compatible with low or high pH conditions. The key is to have a hybrid surface to reduce the solubility of silica at high pH. In fact, the SiliaChrom XT C18 and the XT C18 Fidelity silica are coated with a monomeric methyltriethoxysilane/tetraethoxysilane prepolymer, followed by a special thermic treatment to get a rigid surface that is less soluble than untreated silica itself at high pH.

The Silia*Chrom* XT C18 column is designed for applications to be run at very high pH (*up to 12.0*) at room temperature but it is also suitable for low pH (*down to 1.5*).

The Silia*Chrom* XT C18 Fidelity is used at high pH conditions with a higher thermal stability. The only difference between Silia*Chrom* XT C18 and the XT C18 Fidelity is the way the HPLC column is packed (*proprietary information*) which gives more robutness at high pH and temperature.

Structure

SiliaChrom XT C18 and XT C18 Fidelity

Sorbent Characteristics

- Pore Size: 150 Å
- Specific Surface Area: 380 m²/g
- Particle Sizes Available: 3, 5 and 10 μm
- Typical Carbon Loading: SiliaChrom XT C18 15% SiliaChrom XT C18 Fidelity 21%

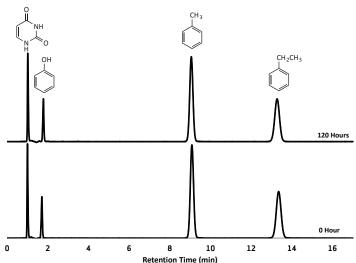
SiliaChrom XT Main Characteristics

- Excellent durability at high pH (up to 12)
- Ideal for basic compounds
- High thermal stability
- Ideal for auto-purification (Prep. LC-MS)
- Double endcapped
- Best HPLC columns for either metabolic or metabolite studies

Stability of SiliaChrom XT C18 Fidelity at High pH Conditions

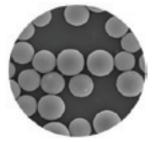
For some applications, it is necessary to work at high pH to increase the selectivity or to optimize peak shape. This is the case with basic organic compounds (pKa > 9.0). It is the reason why it is important to have chromatographic phases stable at alkaline pH. This study demonstrates the stability of the Silia*Chrom* XT C18 Fidelity at high pH.

Chromatographic conditions


- Column: SiliaChrom XT C18 Fidelity, 5 μm
- Column size: 4.6 x 150 mm SiliCycle P/N: HF171805H-N150
- Mobile phase: 0.2% TEA in ACN/water (55/45) (v/v) Solution pH: 11.5
- Temperature: 23°C
- Flow rate: 1.000 mL/min
- Detector: UV at 270 nm

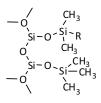
Silia <i>Chrom</i> XT C18 Fidelity (<i>Ethylbenzene</i>)						
Time (hour)	RT TF N (min) (USP) (USP)					
0	13.35	1.01	13,623			
24	13.29	1.01	13,648			
48	13.27	1.01	13,689			
72	13.25	1.00	13,604			
96	13.24	1.00	13,649			
120	13.28	1.00	13,582			
Mean	13.28	1.01	13,633			
RSD (%)	0.29	0.54	0.28			

The HPLC column was used under extreme pH conditions, and even after 5 days of continuous injections, the number of theoretical plates (N), the tailing factor (TF) and the retention times (RT) are comparable. The sorbent kept its chemical and structural integrity, which we have proven with similar chromatograms and scanning electron microscope (SEM) pictures before and after 120 hours of use.


In conclusion, our Silia*Chrom* XT C18 Fidelity columns are stable at high pH conditions.

SiliaChrom XT C18 Fidelity before

SiliaChrom XT C18 Fidelity after


SiliaChrom XDB C18 & XDB C8

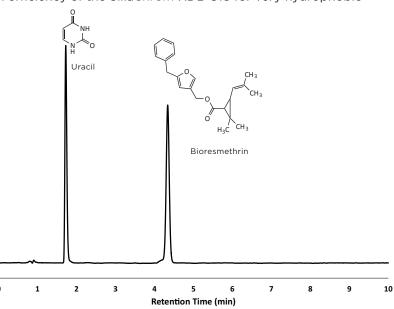
Description

SiliaChrom XDB C18 and C8 are specially designed with a bigger pore size and lower surface area for the separation of large hydrophobic molecules. The relatively low surface area allows a shorter retention time for such compounds.

SiliaChrom XDB phases are ideal for separation of barbiturates, fat-soluble vitamins, fatty acids and steroids.

Structure

For C18 R = $(CH_2)_{17}CH_3$ For C8 R = $(CH_2)_7 CH_3$


SiliaChrom XDB C18 SiliaChrom XDB C8

Resolution and Peak Shape of a Highly Hydrophobic Domestic Insecticide

This application illustrates the high separation efficiency of the SiliaChrom XDB C18 for very hydrophobic compounds.

Chromatographic conditions

- Column: SiliaChrom XDB C18, 5 μm
- Column size: 4.6 x 150 mm SiliCycle P/N: H111805H-N150
- Mobile phase: ACN/water (90/10)
- Temperature: 23°C
- Flow rate: 1.000 mL/min
- Detector: UV at 235 nm
- Injection Volume: 1 μL

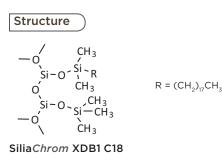
Column Performance Results					
Compounds	Retention Time (min)	Peak Asymmetry Factor (USP)	Theoretical Plates (USP)		
Uracil	1.72	1.26	5,936		
Bioresmethrin	4.34	1.03	14,090		

Sorbent Characteristics

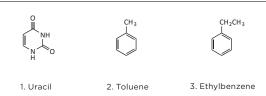
- Pore Size: 150 Å
- Specific Surface Area: 200 m²/g
- Particle Sizes Available: 3, 5 and 10 μm
- Typical Carbon Loading: SiliaChrom XDB C18 15% SiliaChrom XDB C8 8%

SiliaChrom XDB C18 Main Charateristics

- Better choice for molecules > 500 Dalton
- High Loading capacity
- Wide pH range: 1.5 to 9.0
- Double endcapped


SiliaChrom XDB1

Description


SiliaChrom XDB1 phases have a wider range of polarity than other SiliCycle HPLC columns (C18 to normal phase). This phase has the maximum bonding density regardless of compound's polarity. This allows for the least amount of interaction between the analytes and the surface OH. This phase is not recommended for samples containing highly hydrophobic compounds.

All SiliaChrom XDB1 are available in 3, 5 and 10 µm exept the Diol-300 which is not available in 3 μ m.

The SiliaChrom XDB1 C18: Designed for maximum hydrophobicity and efficiency for dirty samples.

Highly Base Deactivated C18

Chromatographic conditions

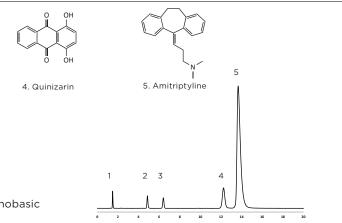
- Column: SiliaChrom XDB1 C18, 5 μm
- Column size: 4.6 x 150 mm SiliCycle P/N: H121805H-N150
- Mobile phase: MeOH/20 mM potassium phosphate mo
- pH = 7.00 (80/20) - Temperature: 23°C
- Flow rate: 1.000 mL/min
- Detector: UV at 254 nm - Injection Volume: 1 µL

Column Performance Results				
Compounds	Retention Time Peak Asymmetry Facto (USP)		Theoretical Plates (USP)	
Uracil	1.49	1.27	3,778	
Toluene	4.86	1.09	12,144	
Ethylbenzene	6.40	1.02	13,026	
Quinizarin	12.24	1.07	11,525	
Amitriptyline	13.66	1.76	8,190	

208

Sorbent Characteristics

SiliaChrom XDB1 C18


- Pore Size: 100 Å
- Specific Surface Area: 380 400 m²/g
- Typical Carbon Loading: 22%
- pH Stability: 1.5 10.0

SiliaChrom XDB1 C18-300

- Pore Size: 300 Å
- Specific Surface Area: 80 m²/g
- Typical Carbon Loading: 8%
- pH Stability: 1.5 9.0

SiliaChrom XDB1 C8 and C18 Main Characteristics

- Better choice for molecules > 500 Dalton
- High Loading capacity
- Wide pH range: 1.5 to 10.0
- Double endcapped

on	ob	้อร	ic

SiliaChrom XDB1

Description

SiliaChrom XDB1 C8: Exceptionally stable with high bonding coverage and low silanol activity.

Si-O

ĊH₃

CH₂

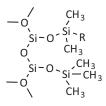
CH - CH $R = (CH_2)_7 CH_2$


SiliaChrom XDB1 C8

Description

SiliaChrom XDB1 C4: Exceptionally stable with high bonding coverage and low silanol activity

 $R = (CH_2)_3 CH_3$


SiliaChrom XDB1 C4

Description

SiliaChrom XDB1 CN: Maximum hydrophobicity and accepts normal and reversed phase conditions.

 $R = (CH_2)_3 CN$

SiliaChrom XDB1 CN

Sorbent Characteristics

- SiliaChrom XDB1 C8
- Pore Size: 100 Å
- Specific Surface Area: 380 400 m²/g
- Typical Carbon Loading: 14%
- pH Stability: 1.5 10.0

SiliaChrom XDB1 C8-300

- Pore Size: 300 Å
- Specific Surface Area: 80 m²/g
- Typical Carbon Loading: 4%
- pH Stability: 1.5 8.5

Sorbent Characteristics

- SiliaChrom XDB1 C4
- Pore Size: 100 Å
- Specific Surface Area: 380 400 m²/g
- Typical Carbon Loading: 7%
- pH Stability: 1.5 8.5

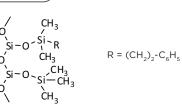
SiliaChrom XDB1 C4-300

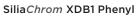
- Pore Size: 300 Å
- Specific Surface Area: 80 m²/g
- Typical Carbon Loading: 3%
- pH Stability: 2.0 8.0

Sorbent Characteristics

- SiliaChrom XDB1 CN
- Pore Size: 100 Å
- Specific Surface Area: 380 400 m²/g
- Typical Carbon Loading: 5%
- pH Stability: 1.5 8.5

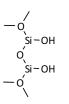
SiliaChrom XDB1 CN-300


- Pore Size: 300 Å
- Specific Surface Area: 80 m²/g
- Typical Carbon Loading: 3.5%
- pH Stability: 2.0 8.0



Description

SiliaChrom XDB1 Phenyl: Highly retentive phase for aromatic and unsaturated compounds.



Description

SiliaChrom XDB1 Si: Designed for normal phase conditions, presents high surface area and low metal content.

Structure

SiliaChrom XDB1 Si

Description

SiliaChrom XDB1 DIOL: Excellent for normal phase applications with more hydrophobic activity.

Structure

 $R = (CH_2)_3OCH_2CH(OH)CH_2OH$

SiliaChrom XDB1 Diol

Sorbent Characteristics

SiliaChrom XDB1 Phenyl

- Pore Size: 100 Å
- Specific Surface Area: 380 400 m²/g
- Typical Carbon Loading: 12%
- pH Stability: 1.5 9.0

SiliaChrom XDB1 Phenyl-300

- Pore Size: 300 Å
- Specific Surface Area: 80 m²/g
- Typical Carbon Loading: 4.5%
- pH Stability: 2.0 8.0

Sorbent Characteristics

SiliaChrom XDB1 Si

- Pore Size: 100 Å
- Specific Surface Area: 380 400 m²/g
- pH Stability: 1.0 8.0

SiliaChrom XDB1 Si-300

- Pore Size: 300 Å
- Specific Surface Area: 80 m²/g
- pH Stability: 1.0 8.0

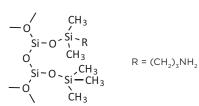
Sorbent Characteristics

SiliaChrom XDB1 DIOL

- Pore Size: 100 Å
- Specific Surface Area: 380 400 m²/g
- Typical Carbon Loading: 5%
- pH Stability: 2.0 8.0

SiliaChrom XDB1 DIOL-300

- Pore Size: 300 Å
- Specific Surface Area: 80 m²/g
- Typical Carbon Loading: 1%
- pH Stability: 2.0 8.0


211

SiliaChrom XDB1

Description

SiliaChrom XDB1 AMINO: Superior general purpose amino phase. Recommended for normal phase analysis and excellent for sugar analysis.

Structure

SiliaChrom XDB1 AMINO

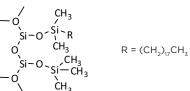
SiliaChrom XDB1 AMINO Main Characteristics

- Wide pH range
- High carbon loading
- · Very stable for agressive mobile phases
- Accepts large injection volume (50 μL and more)
- Double endcapped

Sorbent Characteristics

- SiliaChrom XDB1 AMINO
- Pore Size: 100 Å
- Specific Surface Area: 380 400 m²/g
- Typical Carbon Loading: 6%
- pH Stability: 2.0 8.5

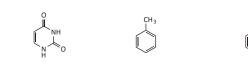
SiliaChrom XDB1 AMINO-300


- Pore Size: 300 Å
- Specific Surface Area: 80 m²/g
- Typical Carbon Loading: 2.5%
- pH Stability: 2.0 8.0

SiliaChrom XDB2 C18

Description

SiliaChrom XDB2 C18: Designed to be a midhydrophobic C18 phase with 18% of carbon loading, like most of the popular reversed-phase HPLC columns on the market. This phase demonstrates a balanced hydrophobic adsorption in order to avoid excessive retention of hydrophobic compounds.


Structure

SiliaChrom XDB2 C18

Highly Base Deactivated C18

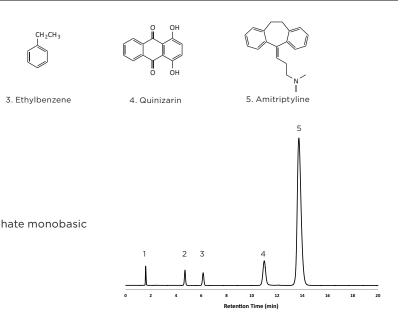
2. Toluene

1. Uracil

Chromatographic conditions

- Column: SiliaChrom XDB2 C18, 5 μm
- Column size: 4.6 x 150 mm
- SiliCycle P/N: H131805H-N150 - Mobile phase: MeOH/20 mM potassium phosphate monobasic pH = 7.00 (80/20)
- Temperature: 23°C
- Flow rate: 1.000 mL/min
- Detector: UV at 254 nm - Injection Volume: 1 µL

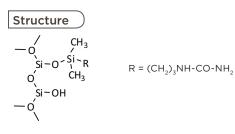
Column Performance Results					
Compounds	Retention Time (min)	Peak Asymmetry Factor (USP)	Theoretical Plates (USP)		
Uracil	1.61	1.24	4 618		
Toluene	4.73	1.04	12 858		
Ethylbenzene	6.19	1.00	13 633		
Quinizarin	11.18	1.03	12 277		
Amitriptyline	13.53	1.29	9 451		



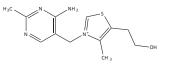
SiliaChrom XDB2 C18

- Pore Size: 100 Å
- Specific Surface Area: 380 400 m²/g
- Particle Sizes Available: 3, 5 and 10 μm
- Typical Carbon Loading: 18%
- pH Stability: 1.5 9.0

SiliaChrom XDB2 C18 Main Charateristics


- Great column-to-column and batch-to-batch reproducibility (*popular for QC/QA laboratory*)
- Typical average value for carbon loading (18%)
- Good peak shape for basic, acidic and neutral analytes
- Stronger separation power for isomers
- Double endcapped

SiliaChrom HILIC


Description

SiliaChrom HILIC (hydrophilic interaction *chromatography*) HPLC columns are designed to retain highly polar analytes. SiliaChrom HILIC has a selectivity that is complementary to reversedphase columns. In fact, it has a higher retention for hydrophilic compounds in HILIC mode. HILIC sorbent is more stable and offers higher reproducibility than normal phase silica or amino columns. This phase is ideal for MedChem laboratories and is approved for SFC applications.

SiliaChrom HILIC

SiliaChrom HILIC: Separation of Vitamin B Complex and Vitamin C

A. Thiamine (B1)

B. Pyridoxine (B6)

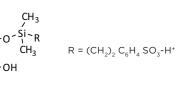
D. Riboflavine (B2)

Chromatographic conditions

- Column: SiliaChrom HILIC, 5 μm
- Column size: 4.6 x 200 mm SiliCycle P/N: H131805H-N150
- Mobile phase: 0.1% TFA in water/0.1% in ACN (90/10)
- Flow rate: 1.000 mL/min
- Detector: UV at 280 nm

- SiliaChrom HILIC
- Pore Size: 100 Å
- Specific Surface Area: 410 440 m²/g
- Particle Sizes Available: 3, 5 and 10 μm
- Typical Carbon Loading: 8%
- pH Stability: 2.0 8.0

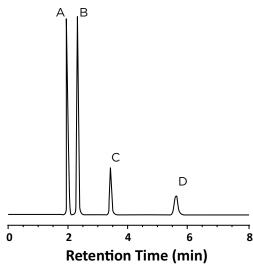
SiliaChrom HILIC Main Characteristics


- Unique chemistry (urea)
- Accepts normal and reversed phase applications
- · Best replacement for amino HPLC column
- Provides high efficiency and rapid equilibration
- Enhanced sensitivity in mass spectrometry
- Non endcapped

SiliaChrom SCX-SAX

Description

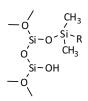
SiliaChrom SCX provides excellent resolution and peak shape for cationic analytes. SiliaChrom SCX contains a benzene sulfonic acid ligand that enables ion-exchange reversed phase and also π - π (*aromatic*) interactions. Silia*Chrom* SCX is used for specific applications including organic bases such as basic amino acids, anilines, drug salts, inorganic cations and nucleosides analysis.


Structure

SiliaChrom SCX

Sorbent Characteristics

- Pore Size: 100 Å
- Specific Surface Area: 380 m²/g
- Particle Sizes Available: 3, 5 and 10 μm
- Typical Carbon Loading: SiliaChrom SCX 10% SiliaChrom SAX 6%
- pH Stability: 2.0 8.5



Description

SiliaChrom SAX provides excellent resolution and peak shape for anionic analytes. SiliaChrom SAX is used for specific applications including pesticides, herbicides, pharmaceuticals, inorganic anions and biological species such as nucleotides and glucosinolates analysis.

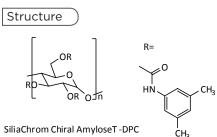
Structure

 $R = (CH_2)_3 N^+ (CH_3)_3 CI^-$

SiliaChrom SAX

SiliaChrom SCX and SAX Main Characteristics

- Narrow peak shape
- Rapid equilibration
- Compatible with organic modifiers
- Provides high efficiency and rapid separations
- Endcapped

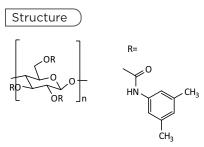

SiliaChrom Chiral Phases

SiliaChrom chiral coated polysaccharide stationary phases are made with a spherical high quality silica support physically coated with a polymeric chiral selector such as amylose or cellulose derivatives. Due to the coated nature of these supports, solvents should be carefully selected for normal phase conditions.

Description

SiliaChrom Chiral Amylose T-DPC:

Amylose tris-(3,5-dimethylphenylcarbamate) coated on a spherical silica support (USP Code L51). Silia*Chrom* Chiral Amylose T-DPC is used for chiral separation of alkaloids, tropines, amines and beta blockers.

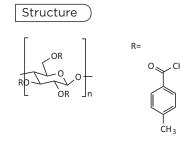


SiliaChrom Chiral Amylose T-DPC

Description

SiliaChrom Chiral Cellulose T-DPC:

Cellulose tris-(3,5-dimethylphenylcarbamate) coated on a spherical silica support (USP L40). SiliaChrom Chiral Cellulose T-DPC is the most popular phase for chiral separation of alkaloids, tropines, amines and beta blockers.

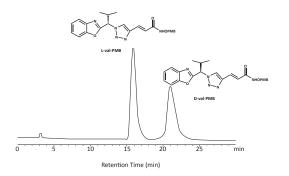


SiliaChrom Chiral Cellulose T-DPC

Description

SiliaChrom Chiral Cellulose T-MB:

Cellulose tris-(4-methylbenzoate) coated on a spherical silica support. SiliaChrom Chiral Cellulose T-MB is used for chiral separation of aryl methyl esters and aryl methoxy esters.



SiliaChrom Chiral Cellulose T-MB

SiliaChrom Chiral Amylose T-DPC Enantiomeric separation of L and D-val PMB

Chromatographic conditions

- Column: SiliaChrom Chiral Amylose T-DPC, 5 μm
- Column size: 4.6 x 250 mm SiliCycle P/N: H81005T-N250
- Mobile phase: Hexane/Isopropanol (80/20)
- Flow rate: 1.000 mL/min
- Detector: UV at 254 nm

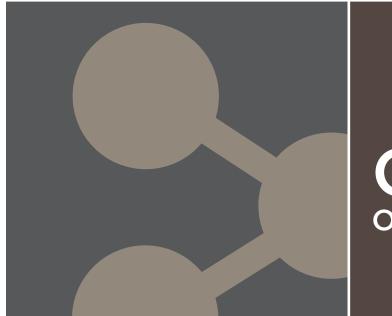
Other SiliaChrom Products

Apart from the classic stationary phases, SiliCycle has Polymer-based SiliaChrom RPC: also developped specific HPLC columns based on a Silia*Chrom* RPC phase is a hydrophobic copolymer silica matrix as our mixed-mode or phase-exclusion based on polystyrene and divinylbenzene. The GF HPLC columns. To satisfy all HPLC needs, SiliCycle macroporous RPC reversed phase resins are available has polymer stationary phases in reversed phase in different particle sizes within a very narrow size applications (RPC columns) and ionic exchange HPLC distribution. The chemically inert polymer matrix of applications (IEC columns). the Silia*Chrom* RPC guarantees chemical stability and allows for use with applications in the range of Mixed-Mode SiliaChrom pH 1 to 14. The K' values measured for aromatic and conjugated molecules on RPC columns are high due Conjugate two surface function chemistries to to the very pure uniform hydrophobic surface. The optimize your separation in a single experiment. high efficiency and high selectivity of SiliaChrom RPC SiliCycle offers the following SiliaChrom Mixed-Mode columns allow the separation of analytes in minutes. HPLC columns: Even basic substances are separated efficiently - SiliaChrom C18/C8 without any peak tailing.

- SiliaChrom C18/Amide
- SiliaChrom C18/Phenvl
- SiliaChrom C18/CN
- SiliaChrom C18/SCX
- SiliaChrom C18/SAX
- Silia*Chrom* C18/Nitrophenvl

Polymer-based SiliaChrom IEC

SiliaChrom IEC series are composed of polystyrene polymer-based packing bearing different functionalities such as weak or strong cationic and anionic functions. Silia*Chrom* IEC phases are compatible with most mobile phases and samples with a pH range from 1 to 14. Polymer-based columns tend to have lower efficiencies for small molecules compared to silica-based columns due to their smaller surface area. Nevertheless, SiliaChrom IEC packing is a good alternative for samples that require a mobile phase pH outside the normal operating range of standard silica-based columns. SiliaChrom IEC columns are generally used for ion-exchange separations, and are also useful for non-aqueous gel permeation chromatography size exclusion analyses and ion exclusion analyses of organic acids and carbohydrates.


This family is composed of 4 stationary phases;

- SiliaChrom IEC WA: Weak anion exchanger
- SiliaChrom IEC SA: Strong anion exchanger
- SiliaChrom IEC WC: Weak cation exchanger
- SiliaChrom IEC SC: Strong cation exchanger

Silica-based SiliaChrom GF:

Size exclusion chromatography (SEC) also known as gel permeation chromatography (GPC) or gel filtration chromatography, separates molecules according to their size (or, more accurately, according to their hydrodynamic diameter or hydrodynamic volume). Smaller molecules are able to enter the pores of the media and, are therefore trapped and removed from the flow of the mobile phase. The average residence time in the pores depends upon the effective size of the analyte and the pore size itself. Larger molecules are excluded with essentially no retention. Silia*Chrom* GF column series are an appropriate set of phases to be used for size exclusion chromatography with silica-based material in normal phase conditions.

Contact Us Order Now

Ordering Information

Quote Form

General Information

Company:
SiliCycle Customer Number (<i>if known</i>):
Contact Name:
E-mail address:
Tel: Fax:
Address Information
Department:
Address:
ZIP/Postal Code:
Country:

Quote Request				
Part Number	Product Description	Request Quantity		

Confirm this request by

FAX
E-mail
Phone Phone
Comments

Information Request Form

Metal Scavengers	Catalysts	Oxidants
Metal of interest:	Silia <i>Cat</i> catalysts	Silia <i>Cat</i> oxidant
	Silia <i>Bond</i> catalysts	Silia <i>Bond</i> oxidants
	Silia <i>Cat</i> + Silia <i>Bond</i> catalysts	SiliaCat + SiliaBond oxidants
Organic scavengers	SiliaBond Reagents	Others
Nucleophile scavengers	Reaction of interest	
Electrophile scavengers		
Genotoxic scavengers		
Chromatographic phases	HPLC Columns	Application notes in
Reversed phases	Reversed phases	Bulk
Normal phases	Normal phases	SPE cartridges
Fluorous phases	lon exchangers	Flash cartridges
lon exchangers	Chiral phases	
General Information		
Company:		
SiliCycle Customer Number (<i>if know</i>	/n):	
Contact Name:		
E-mail address:		
Tel:	Fax:	
Address Information		
Department:		
Address:		
ZIP/Postal Code:		
Country:		

Comments

220

Please Copy and Fax this form to SiliCycle Inc. at 418-874-0355

Order Form

General Information			
Company:			
SiliCycle Client Number: Purch	nase Order Number		
Contact Name:			
E-mail address:			
Tel: Fax:			
Payment Details	Verification Code	*	
Credit card number:	*The 3 last numbe	ers in the back side of ye	our card
Expiry date:	VISA	Master Card	Amex
Name as it appears on card:	VISA		

Address Information for the Shipment

Department:	
Address:	
ZIP/Postal Code:	
Country:	

SiliCycle	Products			
Part Number	Product Description	Packaging (g, Kg, box)	Quantity	Price (USD)

Please Copy and Fax this form to SiliCycle Inc. at 418-874-0355

Confirm this request by

FAX

E-mail Phone

Comments

SiliCyc

Ordering Information

How to order

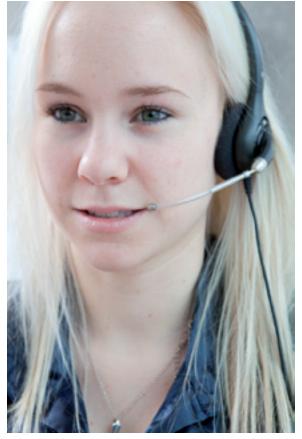
You can order any SiliCycle product on-line through the new SiliCycle e-commerce website: www.silicycle.com.

You can also order any product from this catalog, 365 days or nights a year. We hope you will enjoy this new and friendly way to order SiliCycle products.

Orders can also be placed by phone, fax, mail or e-mail. You will find an order form on page 222 of this catalog for fax (1 418.874.0355) and mail (SiliCycle headquarters address at the bottom of this page) orders. If you prefer, you can reach us by e-mail (info@silicycle.com) or by phone (1 418.874.0054 or Toll free for North America only 1877.745.4292). Please have the following information on hand:

- Your name
- Company name, billing and shipping address
- Purchase order number
- Credit card information
- Catalog number and product description
- Size, quantity and unit of measure
- E.I.N. or F.I.N .for United States clients

Technical Support


At SiliCycle, we are committed to providing the best technical support possible. Our worldwide Technical Support Group is comprised of a team of highly qualified M.Sc., Engineers and PhD Chemists, Technical Support Professionals and Service Coordinators who are prepared to troubleshoot, answer questions, and provide solutions for your service and applications needs.

In order to better respond to your technical inquiries, feel free to contact us in three different ways:

- E-mail: support@silicycle.com
- Phone: International 1 418.874.0054
- Canada USA 1877.745.4292 (Toll-Free)
- Online forum at www.SiliCycle.com

SiliCycle headquarters address:

2500, Parc-Technologique Blvd Quebec City, Quebec G1P 4S6, CANADA

Terms and Conditions

General

Unless otherwise stated, all transactions are expressly subject to these Terms and Conditions. Modifications or additions will be recognized only if accepted in writing by an officer of SiliCycle Inc. (hereinafter named SiliCycle), or an officially designated representative. Provisions of Buyer's Purchase Order or other documents that add to or differ from these Terms and Conditions are expressly rejected. No waiver of these Terms and Conditions or acceptance of others shall be construed as failure of the Company to raise objections.

Privacy Policy

Because your clientele is our most vital asset, we take privacy very seriously and won't share your personal information with anyone. Your information is used only to personalize your profile and to facilitate the transaction. You can change or update your information at any time.

Quotation and Published Prices

Quotations automatically expire 30 calendar days from the date issued unless otherwise stated. Quotes are subject to withdrawal with notice within that period. Prices shown on the published price lists and other published literature issued by SiliCycle are not unconditional offers to sell, and are subject to change without notice.

Warranty

SiliCycle guarantees to the original Buyer that the products sold conform to the composition and purity described therein at the time of their shipment. The Buyer's sole remedy in the event that SiliCycle fails to meet said warranty shall be the replacement of the unused portion of the product(s), or if approved by SiliCycle, a refund (at the purchase price) provided that the Buyer returns the alleged non-conforming product(s) within 30 days after reception of product(s). SiliCycle makes no other guarantee of suitability for a particular purpose or of the merchantability in the use or handling of the product, and does not accept any liability for consequential, special, indirect or incidental damages resulting therefrom.

Changes

The Buyer may, with the express written consent of SiliCycle, make changes in the specifications for products or work covered by the contract. In such an event, the contract price and delivery dates shall be equitably adjusted. SiliCycle shall be entitled to payment for reasonable profit plus costs and expenses incurred by work and materials rendered unnecessary as a result of such changes and for work and materials required to effect said changes.

If the Buyer has made a mistake on his/her purchase order, and the material has already been shipped and received, SiliCycle may approve the exchange of said material (*if price is identical*); however the Buyer will be responsible for all shipping costs. See return authorization policy section on the next page to obtain a return merchandize authorization form prior to returning goods.

Cancellation

Undelivered parts of any order may be cancelled by the Buyer only with the written approval of SiliCycle. If the Buyer makes an assignment for the benefit of creditors, or in the event that SiliCycle, for any reason feels insecure about Buyer's willingness or ability to perform, SiliCycle shall have the unconditional right to cancel the sales transaction or demand full or partial payment.

In the event of any cancellation of this order by either party, the Buyer shall pay SiliCycle for reasonable costs and expenses incurred by the SiliCycle prior to receipt of the cancellation notice, plus SiliCycle's usual rate of profit for similar work.

Taxes

The Company's prices do not include any applicable sales, goods and services, use, excise or similar taxes and the amount of any such tax SiliCycle may be required to pay or collect will be added to each invoice and paid by the Buyer.

Terms of Payment

All merchandise purchased remains the property of SiliCycle until such time as all invoices for the merchandise have been paid in full. Except for purchases paid online, or unless explicitly stated elsewhere in writing, terms are cash net 30 days from date of invoice. Additional fees of 2% per month (26.8% per year) will accrue on all accounts past due. If any payment is in default, and it becomes necessary to hire a recovery agency or lawyer, the client accepts to pay, in addition to the outstanding balance, recovery fees equal to 20% of the balance in capital and interests. By reason of the financial condition of Buyer or otherwise, SiliCycle may require full or partial payment in advance.

Certain orders may require a deposit or progressive payments as referenced in the quote. Such deposits may be increased upon receipt of purchase order based upon the Buyer's most current credit rating. Subject to the warranties stated in this policy, all sales are final without right of return.

Return Policy

Our Customer Service Department is available to assist you at any time should a problem arise with your order. Please make sure to inspect your packages immediately upon receipt and notify us within the next two (2) business days of any damage and/or discrepancies. Should a product be sent to you incorrectly, as the result of an error on our part, we will take quick and appropriate action to correct the problem at no charge to you.

In order to maintain the quality of our products and continue to provide competitive prices, some products may not be returned for credit. SiliCycle will not grant credit for:

- (i) Shelf-worn, used or defaced products;
- (ii) Scavengers, reagents, catalysts, or any other bounded silica whose containers have been opened;
- (iii) Products that are personalized or customized;
- (iv) Refrigerated or temperature-controlled products;
- (v) Products that have been discontinued;
- (vi) Products not directly purchased from SiliCycle

Products sold in distribution by SiliCycle will be subject to the Terms and Conditions Policy of the respective manufacturer.

Prior to any return, an authorization and a return material authorization (RMA) number must be obtained from our Customer Service Department. Shipping instructions will also be provided at this point. The RMA will ensure the safe and proper handling of material; it should therefore be referenced on all shipping labels.

The Buyer has 30 days from the issuance of the RMA to return the goods. Returns made without an authorization number will not be accepted and will be returned to the Buyer.

Returns are subject to a 50% restocking and/or disposal fee.

Shipping Policy

SiliCycle uses a two-day or five-day delivery (or equivalent) depending on weight and availability of product. Standard overnight delivery can also be arranged. Freight charges are prepaid and added to the invoice unless special instructions are requested by the customer. These conditions apply to all North American shipments. International delivery delays will vary according to orders and destination countries.

Delivery

Delivery dates indicated in the contract documents are approximate and based on prompt receipt of all necessary information regarding the product covered by the contract. SiliCycle will use reasonable efforts to meet the indicated delivery dates, but cannot be held responsible for its failure to do so.

In the event of any delivery delay caused by the Buyer, SiliCycle will store and handle all items ordered at Buyer's risk and will invoice Buyer for the unpaid portion of the contract price, plus storage, insurance, and handling charges on or after the date on which the product is ready for delivery. The invoice will be payable in full within 30 days from the invoice date, unless otherwise expressly agreed to in writing by SiliCycle.

SiliCycle will not hold orders unless specifically approved. SiliCycle has the right to make partial shipments and bill for those shipments; the buyer will make payment in accordance with the terms mentioned in this policy.

Shipping and Handling Charges

Shipping charges plus the applicable company handling charges will be prepaid and billed as a separate item on the product invoice. Title to the product and risk of loss shall pass to Buyer upon delivery to a carrier.

Application

All products are sold for laboratory or manufacturing uses. Only professional laboratory staff should handle the chemicals.

SiliaBond & SiliaCat Listing

Category Listing			
Product (Number)	Structure	Function	Characteristics
Silia <i>Bond</i> Allyl (<i>Si</i> -Allyl) R53530B	Si	Solid Linker	Loading: 1.2 mmol/g Endcapping: yes Density: 0.613 g/mL
Silia <i>Bond</i> Aluminium Chloride (<i>Si</i> -AlCl _x) R74530B	Si AICI _x	Catalyst & Reagent	Loading: 1.6 mmol/g Endcapping: no
Silia <i>Bond</i> Amine (<i>Si</i> -WAX or <i>Si</i> -NH ₂) R52030B	Si NH ₂	Base, Metal Scavenger Chromatographic Phase Ion Exchange Phase	Loading: 1.6 mmol/g Endcapping: yes Density: 0.700 g/mL
Silia <i>Bond</i> Bromophenyl (<i>Si</i> -BRP) R55030B	Si Br	Linker	Loading: 1.6 mmol/g Endcapping: yes Density: 0.742 g/mL
Silia <i>Bond</i> C18 R30030B, R30130B, R33230B, R33330B	S	Chromatographic Phase	Loading: 11 to 23 %C Endcapping: yes & no
Silia <i>Bond</i> C12 R53030B	SI	Chromatographic Phase	Loading: 16 %C Endcapping: yes Density: 0.665 g/mL
Silia<i>Bond</i> C8 R31030B & R31130B	Si	Chromatographic Phase	Loading: 12 %C Endcapping: yes & no Density: 0.759 g/mL
Silia<i>Bond</i> C4 R32030B & R32130B	Si	Chromatographic Phase	Loading: 8 %C Endcapping: yes & no Density: 0.656 g/mL
Silia <i>Bond</i> C1 R33030B	Si - CH ₃	Chromatographic Phase	Loading: 5 %C Endcapping: yes Density: 0.599 g/mL
Silia <i>Bond</i> Carbodiimide (<i>Si</i> -DCC) R70530B		Reagent	Loading: 0.9 mmol/g Endcapping: yes Density: 0.751 g/mL
Silia <i>Bond</i> Carbonate (<i>Si</i> -CO ₃) R66030B	Si N ⁺ (CO ₃ ²⁻) _{0.5}	Base Organic Scavenger	Loading: 0.7 mmol/g Endcapping: no Density: 0.608 g/mL
Silia <i>MetS</i> Diamine (<i>Si</i> -DIA) R49030B	Si NH ₂	Metal Scavenger Base Ion Exchange Phase	Loading: 1.4 mmol/g Endcapping: yes Density: 0.728 g/mL
Silia <i>Bond</i> Dichlorotriazine (<i>Si</i> -DCT) R52230B		Reagent	Loading: 0.7 mmol/g Endcapping: yes Density: 0.781 g/mL
Silia <i>Bond</i> Diethylamine (<i>Si</i> -WAX-2) R76530B	Si N	Base Ion Exchange Phase	Loading: 1.2 mmol/g Endcapping: yes Density: 0.685 g/mL
Silia<i>Bond</i> Dimethylamine R45030B	Si N	Base	Loading: 1.4 mmol/g Endcapping: yes Density: 0.762 g/mL
Silia <i>Bond</i> Diol R35030B	Сі ОТО ОН	Chromatographic Phase Organic Scavenger	Loading: 1.0 mmol/g Endcapping: no Density: 0.688 g/mL

Category ListingProduct (Number)StructureSiliaBond Diphenylphosphine (Si-DPP) R39030B (f) (s) (f) (s) SiliaBond DMAP (Si-DMAP) R75530B (s) (s) (s) (s) SiliaMetS DMT R79030B (s) (s) (s) (s)	
SiliaBond Diphenylphosphine (Si-DPP) R39030B i SiliaBond DMAP (Si-DMAP) R75530BSiliaMetS DMT NSiliaMetS DMT R79030BSH N	
(Si-DPP) R39030B SiliaBond DMAP SiliaBond DMAP SiliaNetS DMT SiliaMetS DMT SH R79030B SH	ire
(Si-DMAP) R75530B	
Silia <i>MetS</i> DMT	I
	`SН
Silia Cat DPP-Pd R390-100 $\begin{bmatrix} 0\\ 0\\ -Si\\ 0\\ 1\end{bmatrix}_n DPP-Pd$	
SiliaBond EDC R70630B	\sim
SiliaBond Fluorochrom (Si-FCM) R63730B	
SiliaBond Glycidoxy (Si-GLY) R36030B	
Silia <i>MetS</i> Imidazole (<i>Si</i> -IMI) R79230B	
SiliaBond HOBt NEW R70730B PRODUCT SI NH	Ĭ,
SiliaBond Isocyanate (Si-ISO) R50030B	
SiliaBond Maleimide (Si-MAL) R71030B	
SiliaBond Morpholine (Si-MOR) R68030B	
Silia Cat Pd ^o R815-100 PRODUCT $\begin{bmatrix} 1 \\ 0 \\ -0-Si-CH_3 \\ 0 \\ 1 \end{bmatrix}_n Pd^o$	
Silia Cat Pt ^o R820-100 PRODUCT $\begin{bmatrix} 0\\ 0\\ -Si-CH_3\\ 0\\ 1\end{bmatrix}_n^p t^0$	

e	Function	Characteristics
	Reagent	Loading: 0.9 mmol/g Endcapping: yes Density: 0.692 g/mL
	Catalyst & Reagent	Loading: 0.8 mmol/g Endcapping: yes Density: 0.674 g/mL
4	Metal Scavenger	Loading: 0.5 mmol/g Endcapping: yes Density: 0.732 g/mL
	Catalyst	Loading: > 0.2 mmol/g Endcapping: yes Density: 0.415 g/mL
N=C=N	Reagent	Loading: 0.8 mmol/g Endcapping: yes Density: 0.770 g/mL
	Fluorous Phase	Loading: 7 % Carbon Endcapping: yes Density: 0.738 g/mL
	Linker	Loading: 1.1 mmol/g Endcapping: no Density: 0.662 g/mL
	Base Metal Scavenger	Loading: 0.9 mmol/g Endcapping: no Density: 0.681 g/mL
OH - N N N	Reagent	Loading: 0.8 mmol/g Endcapping: yes Density: TBD
	Nucleophile Scavenger	Loading: 1.2 mmol/g Endcapping: yes Density: 0.741 g/mL
	Organic Scavenger	Loading: 0.7 mmol/g Endcapping: yes
	Base	Loading: 1.1 mmol/g Endcapping: yes Density: 0.666 g/mL
	Catalyst	N/A
	Catalyst	N/A

Silia*Bond* & Silia*Cat* Listing (con't)

Category Listing			
Product (Number)	Structure	Function	Characteristics
Silia <i>Bond</i> Pentafluorophenyl (<i>Si</i> -PFP) R67530B		Fluorous Phase	Loading: 0.8 mmol/g Endcapping: yes Density: 0.666 g/mL
Silia <i>Bond</i> Phenyl (<i>Si</i> -PHE) R34030B	SI-	Chromatographic Phase	Loading: 1.2 mmol/g Endcapping: yes Density: 0.637 g/mL
Silia <i>Bond</i> Phenylmethylchloride R56530B	Si - Ci	Linker	Loading: 0.5 mmol/g Endcapping: yes Density: 0.637 g/mL
Silia <i>Bond</i> Piperazine (<i>Si</i> -PPZ) R60030B		Base	Loading: 0.8 mmol/g Endcapping: yes Density: 0.671 g/mL
Silia <i>Bond</i> Piperidine (<i>Si</i> -PIP) R71530B	Si N	Base	Loading: 1.1 mmol/g Endcapping: yes Density: 0.660 g/mL
Silia <i>Bond</i> Potassium Permanganate R23030B	Si +K MnO4	Oxidant	Loading: 10 % w/w Endcapping: no Density: 0.593 g/mL
Silia <i>Bond</i> Propyl Bromide (<i>Si</i> -PBR) R55530B	Si Br	Linker	Loading: 1.5 mmol/g Endcapping: yes Density: 0.748 g/mL
SiliaBond PropyIsulfonic Acid (Si-SCX-2) R51230B	Сі С	Acid, Reagent Ion Exchange Phase Nucleophile Scavenger	Loading: 1.0 mmol/g Endcapping: yes Density: 0.728 g/mL
Silia <i>Bond</i> Pyridine (<i>Si</i> -PYR) R43030B	Si	Base	Loading: 1.3 mmol/g Endcapping: yes Density: 0.727 g/mL
Silia <i>Bond</i> Pyridinium Chloro- chromate (PCC) R24030B	Si + CICrO ₃ -	Oxidant	Loading: 20 % w/w Endcapping: no Density: 0.693 g/mL
SiliaBond Pyridinium Dichro- mate (PDC) R24530B	$Si + \left[\square NH^{+} \right]_{2} Cr_{2}O_{7}^{2}$	Oxidant	Loading: 20 % w/w Endcapping: no Density: 0.651 g/mL
SiliaBond Silver Nitrate (Si-AgNO ₃) R23530B	Si +AgNO ₃	Chromatographic Phase	Loading: 10 % w/w Endcapping: no Density: 0.651 g/mL
SiliaCat S-Pd R510-100	$ \begin{bmatrix} I \\ O - Si \\ O \\ I \end{bmatrix}_{n}^{S-Pd} $	Catalyst	Loading: >0.3 mmol/g Endcapping: yes Density: 0.550 g/mL
Silia<i>MetS</i> TAAcOH R69030B		Acid Metal Scavenger	Loading: 0.4 mmol/g Endcapping: yes Density: 0.632 g/mL
Silia<i>MetS</i> TAAcONa R69230B	Same as TAAcOH but with Na	Metal Scavenger	Loading: 0.4 mmol/g Endcapping: yes Density: 0.712 g/mL

Category Listing	
Product (Number)	Structure
Silia <mark>Bond TBA Chloride</mark> (Si-TBACI) R65530B	$\overbrace{CI^{-} \begin{array}{c} C_{4}H_{9} \\ C_{4}H_{9} \\ C_{4}H_{9} \end{array}}^{C_{4}H_{9}}$
Silia <i>Bond</i> TBD R68530B	Si N N N N
Silia<u>Cat</u> TEMPO R723-100	$\begin{bmatrix} I \\ 0 \\ -Si \\ 0 \\ I \end{bmatrix}_{n}^{H} \xrightarrow{H} \xrightarrow{N}$
Silia<i>MetS</i> Thiol R51030B	Si
Silia <i>MetS</i> Thiourea (<i>Si-</i> THU) R69530B	Si NH H
Silia <mark>Bond TMA Acetate</mark> (Si-SAX-2) R66430B	Si I CH ₃ COO-
Silia <mark>Bond</mark> TMA Chloride (<i>Si</i> -SAX) R66530B	
Silia <mark>Bond Tosic Acid</mark> (Si-SCX) R60530B	Сі С
Silia <mark>Bond</mark> Tosyl Chloride (Si-TsCl) R44030B	
Silia <i>Bond</i> Tosyl Hydrazine (<i>Si</i> -TsNHNH ₂) R61030B	
Silia <i>MetS</i> Triamine (<i>Si</i> -TRI) R48030B	Si N N N N N N N N N N N N N N N N N N N
Silia <mark>Bond Tridecafluoro</mark> (Si-TDF) R63530B	Si (CF ₂) ₅ -CF ₃
Silia<i>Bond</i> Urea R67030B	Si NH ₂

е	Function	Characteristics
	Ion Exchanger Phase	Loading: 0.5 mmol/g Endcapping: no Density: 0.751 g/mL
	Base Metal Scavenger Reagent	Loading: 0.9 mmol/g Endcapping: yes Density: 0.730 g/mL
[×] ö	Catalyst	Loading: 0.7 mmol/g Endcapping: yes Density: 0.639 g/mL
	Metal Scavenger	Loading: 1.2 mmol/g Endcapping: yes Density: 0.682 g/mL
	Metal Scavenger	Loading: 1.2 mmol/g Endcapping: yes Density: 0.767 g/mL
	Ion Exchange Phase	Loading: 1.0 mmol/g Endcapping: no Density: 0.665 g/mL
	Ion Exchange Phase	Loading: 1.1 mmol/g Endcapping: no Density: 0.751 g/mL
	Acid, Reagent Nucleophile Scavenger Ion Exchange Phase	Loading: 0.8 mmol/g Endcapping: yes Density: 0.743 g/mL
	Nucleophile Scavenger	Loading: 1.0 mmol/g Endcapping: yes Density: 0.761 g/mL
NH ₂	Electrophile Scavenger	Loading: 1.5 mmol/g Endcapping: yes
∕_ _{NH₂}	Base Metal Scavenger	Loading: 1.2 mmol/g Endcapping: yes Density: 0.736 g/mL
	Fluorous Phase	Loading: 0.5 mmol/g Endcapping: yes Density: 0.842 g/mL
	Scavenger Chromatographic Phase	Loading: 1.3 mmol/g Endcapping: yes Density: 0.695 g/mL

SiliCycle Products and Mettler-Toledo MiniBlock[®]

An Ideal Partnership in North America

- The productivity enhancement of MiniBlock combined with the cutting-edge technology available from SiliCycle enable chemists to design reactions that eliminate tedious work-up and purification issues.
- The MiniBlock is compatible with the full range of SiliCycle products from the synthesis through the purification.
- All SiliCycle silicas (i.e.: Silia*MetS* Metal Scavengers, Silia*Cat* Heterogeneous Catalysts, and Silia*Bond* Functionalized silica gels) are available in MiniBlock prepacked SPE cartridges.

MiniBlock

The MiniBlock is an easy to use reaction block designed for parallel synthesis and screening. The unique valve body design of the MiniBlock enables processes where filtration is critical, including solid-phase organic synthesis, use of scavenger resins with solution phase synthesis and parallel purification via Solid Phase Extraction (SPE).

MiniBlock Reactors

Patented reactor with built-in value design. Available in 48, 24, 12, and 6-position arrays for reaction vessel volumes respectively of 4mL, 10mL, 20mL and 40mL.

13742044	MiniBlock Reactor Blue	48-position
13742043	MiniBlock Reactor Red	48-position
13742200	MiniBlock Reactor Blue	24-position
13742201	MiniBlock Reactor Red	24-position
13742210	MiniBlock Reactor Blue	12-position
13742211	MiniBlock Reactor Red	12-position
13742220	MiniBlock Reactor Blue	6-position
13742221	MiniBlock Reactor Red	6-position

Shaking and Washing Station

High performance orbital shaker with integrated basins for wash and rinse capability. Customized and configured to provide vigorous vortex mixing for up to 2 (compact) and 6 (high capacity) MiniBlocks.

13742071 Compact Shaking and Washing Station, 115V 13742004 High Capacity Shaking and Washing Station, 115V

SiliCycle Products and MiniBlock: Great Compatibility

Catalysis using Silia*Cat*

- Suzuki Coupling (p. 25)
- Heck Coupling (p. 28)
- Sonogashira Coupling (p. 30)
- Stille Coupling (p. 32)
- Selective Hydrogenation (p. 36)
- Selective Debenzylation (p.38)
- Hydrosilylation Coupling (p.41)
- Oxidation (p.42)

Purification

- Metal Removal using Silia*MetS* (p. 85)
- SiliaBond Organic Scavengers (p. 115)
- Silia*Bond* Chromatographic Phases (p. 144)
- SiliaBond Ion Exchange Phases (p. 148)

All SiliCycle SiliaBond & SiliaCat can be used with the MiniBlock and are available in prepacked SPE cartridges compatible with this system. Contact us for more details.

Synthesis using SiliaBond

- Amide Coupling (p. 52)
- Baylis-Hillman & Acylations (p. 63)
- Fisher-Speier Esterifications (p. 66)
- Friedel-Crafts Alkylation (p. 70)
- Henry Reactions (p. 62)
- Oxidation (p. 47)
- Reductive Amination (p. 59)
- Williamson Etherification (p. 68)

SiliCycle Products MiniBlock:

An Ideal Partnership

Analysis

• SiliaPrep SPE Sorbents (p. 171)

SiliaCat	Heterogeneous	Catalysts
----------	---------------	-----------

Suzuki Coupling Using Pd-based Silia <i>Cat</i>
Heck Coupling Using SiliaCat DPP-Pd & S-Pd30
Sonogashira Coupling Using Silia <i>Cat</i> Catalysts
Stille Coupling Using Silia <i>Cat</i> Pd Catalysts34
Kumada Coupling Using Silia <i>Cat</i> Pd Catalysts
Selective Hydrogenation of Nitroarene Using Silia <i>Cat</i> Pt ^o
Selective Debenzylation Using Silia <i>Cat</i> Pd ⁰ 40
Hydrosilylation Using Silia <i>Cat</i> Pt ^o 43
Oxidation Using Silia <i>Cat</i> TEMPO44
Silia <i>Bond</i> Oxidants
Oxidation of alcohols to aldehydes and ketones51
Silia ^{Bond} Reagents
Amide Coupling Reactions
Synthesis of Capsaicin Analogues57
Amine Protection Using Benzylcarbamate Group57
Synthesis of Amide Derivatives of Indomethacin
Synthesis of Formylated Amino Acids57
Weinreb and Acylsulfonamide Synthesis60
Silia <i>Bond</i> Cyanoborohydride for Reductive Amination61
Silia <i>Bond</i> Carbonate for Henry Reaction
Silia <i>Bond</i> DMAP for Baylis-Hillman and Acylation Reactions
Silia <i>Bond</i> Tosic Acid in Fischer-Speier Esterification
Silia <i>Bond</i> TBD for Williamson Etherification
SiliaBond Aluminum Chloride Used as a Catalyst for Friedel-Crafts Alkylation and Acylation73
Silia <i>Bond</i> Aluminium Chloride (<i>R74530B</i>)72
Silia <i>Bond</i> Reagents and Scavengers for Typical Coupling Reactions
Silia <i>Bond</i> Reagents and Scavengers for Common Organic Reactions
Flow Chemistry Applications
Acylation Reaction Using Silia <i>Bond</i> DMAP78
Friedel-Craft Alkylation Using Silia <i>Bond</i> Aluminum Chloride
Knoevenagel Condensation using Silia <i>Bond</i> Piperidine
Deprotection of Methoxymethyl Group using Silia <i>Bond</i> SCX
Microwave Applications
Amide Coupling using Silia <i>Bond</i> Carbodiimide82
Reductive Amination using Silia <i>Bond</i> Cyanoborohydride
Henry Reaction using Silia <i>Bond</i> Carbonate83
SiliaMetS Metal Scavengers
Silia <i>MetS</i> Selection Guide
Silia <i>MetS</i> - A GlaxoSmithKline Case Study ¹ 102
Scavenging Efficiency, Recovery & Purity102
Ruthenium Scavenging with Silia <i>MetS</i> 105
Tin Scavenging with Silia <i>MetS</i> 106

Osmium Scavenging with SiliaMets Multiple Metal Scavenging with Sil SiliaMetS Success Stories Publishe An Amgen Case Study¹..... SiliaMetS Leaching & Stability Stud SiliaMetS Metal Scavengers Orderi

SiliaBond Organic Scavengers

Scavenging Acids Chlorides with S Amine Free Basing Using Bond Ca Scavenging Phenols and Acids with Scavenging of Amine with SiliaBor Scavenging Boronic Acid with Silia Scavenging 2-Iodobenzoic Acid Us Ester Hydrolysis Purification Using

SiliaSep Flash Cartridges

Silia*Sep* Reproducibility SiliaSep Superior Performance... Better Separations with SiliaSep -High Resolution with SiliaSep HP. SiliaSep HP - Save Time with Faste SiliaSep HP - Higher Loading Capa SiliaSep XL - Superior Resolution. SiliaPrep Solid-Phase Extraction (S SiliaPrep Carbonate Amine Free B SiliaPrep Propylsulfonic acid and SiliaPrep TMA Acetate nec (SAX-2 SiliaPrep Reversed Phases C18 Det SiliaPrep CleanDRUG Drug of Abu

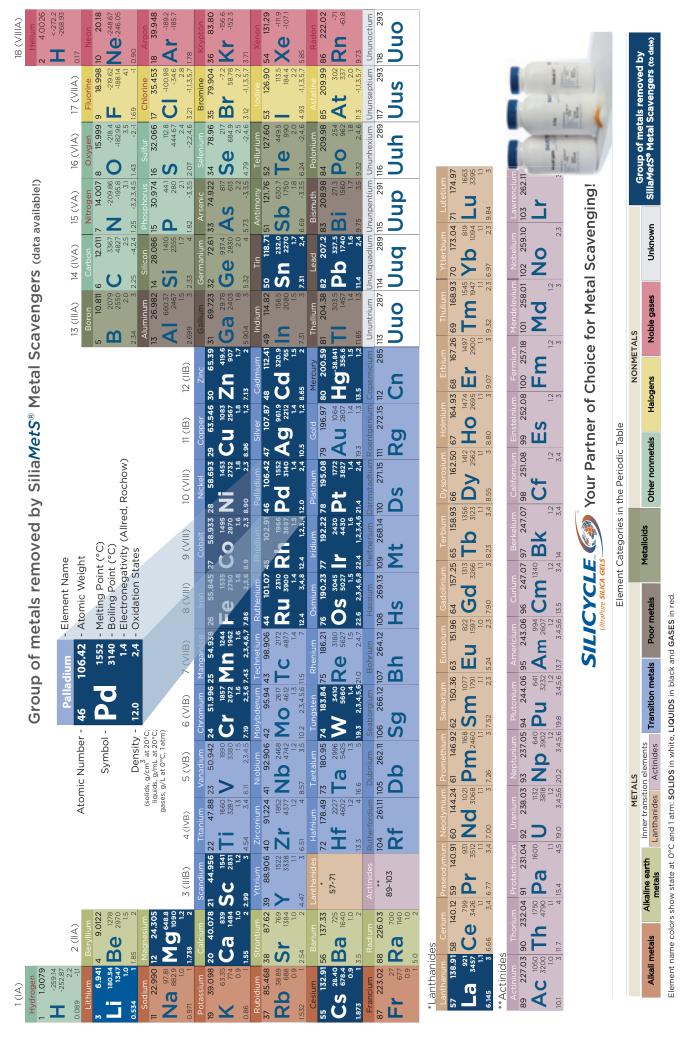
SiliaChrom HPLC Columns

Dewetting Phenomena Retention Capacity of DMSO on Si Peak Shape Evaluation for Zwetter Evaluation of Resolution and Peak SiliaChrom AQ C18 for Basic Com Rapid HPLC with SiliaChrom AQ C Assay for QC Testing of Blood Pre-Ropinirole and Amitriptyline Detec Stability of SiliaChrom SB C18 at L Stability of SiliaChrom XT C18 Fide Resolution and Peak Shape of a Hi Highly Base Deactivated C18.... SiliaChrom HILIC: Separation of V SiliaChrom Chiral Amylose T-DPC Enantiomeric Separation of L and D-val PMB216

<i>S</i> 1 lia <i>MetS</i>	
ed by Customers1	
dies	
ing Information	114
Silia <i>Bond</i> Amine	
arbonate	
thSilia <i>Bond</i> Carbonate	
nd Isocyanate	
aSilia <i>Bond</i> Carbonate and Silia <i>Bond</i> Diol	
Ising Silia <i>Bond</i> TMA Acetate and Carbonate	
g Silia <i>Bond</i> TMA Acetate1	126
1	
1	
Higher Plate Count (N)1	
1	
er Flow Rate1	67
acity1	67
1	68
SPE) and Well Plates	
Basing Purification	80
Tosic Acid Catch and Release Purification	181
2) Catch and Release of Acidic Compounds1	182
termination of Testosterone in Human Urine1	185
use Determination in Human Urine	90
1	98
ilia <i>Chrom</i> AQ C181	99
rion Fluoroquinolones2	00
Shape	00
pounds	201
218 - Mix from Pharmaceutical Company2	201
essure and Cholesterol Medication	
ction in Human Plasma	
ow pH Conditions	
elity at High pH Condition	
ighly Hydrophobic Domestic Insecticid	
itamins B Complex and Vitamin C	
	-12

Product Numbers Index

96W-AUT-0014-B	185	B10007E	142	FLH-R35030B-95M	167	FLH-R51030B-IS220	112	FLH-R66430B-ISO04	160	FLH-R69530B-ISO80
96W-AUT-0014-C	185	B10009B	142	FLH-R35030B-95N	167	FLH-R51030B-IS330	112	FLH-R66430B-ISO12	160	FLH-R79030B-276F
96W-AUT-0014-G	185	B10009B	142	FLH-R35030B-I1500	160	FLH-R51030B-IS750	112	FLH-R66430B-ISO25	160	FLH-R79030B-70i
96W-AUT-0053-B	185	B10025B	142	FLH-R35030B-IS120	160	FLH-R51030B-ISO04	112	FLH-R66430B-ISO40	160	FLH-R79030B-70Y
96W-AUT-0053-C	185	B10025E	142	FLH-R35030B-IS220	160	FLH-R51030B-ISO12	112	FLH-R66430B-ISO80	160	FLH-R79030B-70Z
96W-AUT-0053-G	185	FLH-R10017B-IS120	160	FLH-R35030B-IS330	160	FLH-R51030B-ISO25	112	FLH-R66530B-12iM	168	FLH-R79030B-95K
96W-AUT-0054-B	185	FLH-R10017B-IS220	160	FLH-R35030B-IS750	160	FLH-R51030B-ISO40	112	FLH-R66530B-12iS	168	FLH-R79030B-95M
96W-AUT-0054-C	185	FLH-R10017B-IS330	160	FLH-R35030B-ISO04	160	FLH-R51030B-ISO80	112	FLH-R66530B-12U	167	FLH-R79030B-95N
96W-AUT-0054-G	185	FLH-R10017B-ISO04	160	FLH-R35030B-ISO12	160	FLH-R51230B-12iM	168	FLH-R66530B-25X	167	FLH-R79030B-I1500
96W-AUT-0055-B	185	FLH-R10017B-ISO12	160	FLH-R35030B-ISO25	160	FLH-R51230B-12iS	168	FLH-R66530B-276F	167	FLH-R79030B-IS120
96W-AUT-0055-C	185	FLH-R10017B-ISO25	160	FLH-R35030B-ISO40	160	FLH-R51230B-12U	167	FLH-R66530B-40iL	168	FLH-R79030B-IS220
96W-AUT-0055-G	185	FLH-R10017B-ISO40	160	FLH-R35030B-ISO80	160	FLH-R51230B-25X	167	FLH-R66530B-40iS	168	FLH-R79030B-IS330
96W-R023830B-B	187	FLH-R10017B-IS080	160	FLH-R38030B-12iM	168	FLH-R51230B-276F	167	FLH-R66530B-65i	168	FLH-R79030B-IS750
96W-R023830B-C	187	FLH-R10030B-12iM	168	FLH-R38030B-12iS	168	FLH-R51230B-40iL	168	FLH-R66530B-70i	167	FLH-R79030B-IS004
96W-R023830B-G								FLH-R66530B-70Y		
	187	FLH-R10030B-12iS	168	FLH-R38030B-12U	167	FLH-R51230B-40iS	168		167	FLH-R79030B-IS012
96W-R028030B-B	187	FLH-R10030B-15U	167	FLH-R38030B-25X	167	FLH-R51230B-65i	168	FLH-R66530B-70Z	167	FLH-R79030B-ISO25
96W-R028030B-C	187	FLH-R10030B-25X	167	FLH-R38030B-276F	167	FLH-R51230B-70i	167	FLH-R66530B-75iL	168	FLH-R79030B-ISO40
96W-R028030B-G	187	FLH-R10030B-276F	167	FLH-R38030B-40iL	168	FLH-R51230B-70Y	167	FLH-R66530B-75iM	168	FLH-R79030B-IS080
96W-R10030B-B	185	FLH-R10030B-40iL	168	FLH-R38030B-40iS	168	FLH-R51230B-70Z	167	FLH-R66530B-75iS	168	FLH-R79230B-276F
96W-R10030B-C	185	FLH-R10030B-40iS	168	FLH-R38030B-65i	168	FLH-R51230B-75iL	168	FLH-R66530B-95K	167	FLH-R79230B-70i
96W-R10030B-G	185	FLH-R10030B-65i	168	FLH-R38030B-70i	167	FLH-R51230B-75iM	168	FLH-R66530B-95M	167	FLH-R79230B-70Y
96W-R31030B-B	184	FLH-R10030B-70i	167	FLH-R38030B-70Y	167	FLH-R51230B-75iS	168	FLH-R66530B-95N	167	FLH-R79230B-70Z
96W-R31030B-C	184	FLH-R10030B-70Y	167	FLH-R38030B-70Z	167	FLH-R51230B-95K	167	FLH-R66530B-I1500	160	FLH-R79230B-95K
96W-R31030B-G	184	FLH-R10030B-70Z	167	FLH-R38030B-75iL	168	FLH-R51230B-95M	167	FLH-R66530B-IS120	160	FLH-R79230B-95M
96W-R31930B-B	181	FLH-R10030B-75iL	168	FLH-R38030B-75iM	168	FLH-R51230B-95N	167	FLH-R66530B-IS220	160	FLH-R79230B-95N
96W-R31930B-C	181	FLH-R10030B-75iM	168	FLH-R38030B-75iS	168	FLH-R51230B-I1500	160	FLH-R66530B-IS330	160	FLH-R79230B-I1500
96W-R31930B-G	181	FLH-R10030B-75iS	168	FLH-R38030B-95K	167	FLH-R51230B-IS120	160	FLH-R66530B-IS750	160	FLH-R79230B-IS120
96W-R33229G-B	181	FLH-R10030B-95K	167	FLH-R38030B-95M	167	FLH-R51230B-IS220	160	FLH-R66530B-ISO04	160	FLH-R79230B-IS220
96W-R33229G-C	181	FLH-R10030B-95M	167	FLH-R38030B-95N	167	FLH-R51230B-IS320	160	FLH-R66530B-ISO12	160	FLH-R79230B-IS330
96W-R33229G-G	181	FLH-R10030B-95N	167	FLH-R38030B-I1500	160	FLH-R51230B-IS750	160	FLH-R66530B-ISO25	160	FLH-R79230B-IS750
							160		160	
96W-R34030B-B	184	FLH-R10030B-I1500	160	FLH-R38030B-IS120	160	FLH-R51230B-ISO04		FLH-R66530B-ISO40		FLH-R79230B-ISO04
96W-R34030B-C	184	FLH-R10030B-IS120	160	FLH-R38030B-IS220	160	FLH-R51230B-ISO12	160	FLH-R66530B-ISO80	160	FLH-R79230B-ISO12
96W-R34030B-G	184	FLH-R10030B-IS220	160	FLH-R38030B-IS330	160	FLH-R51230B-ISO25	160	FLH-R69030B-276F	113	FLH-R79230B-ISO25
96W-R35530B-B	181	FLH-R10030B-IS330	160	FLH-R38030B-IS750	160	FLH-R51230B-ISO40	160	FLH-R69030B-70i	113	FLH-R79230B-ISO40
96W-R35530B-C	181	FLH-R10030B-IS750	160	FLH-R38030B-ISO04	160	FLH-R51230B-ISO80	160	FLH-R69030B-70Y	113	FLH-R79230B-ISO80
96W-R35530B-G	181	FLH-R10030B-ISO04	160	FLH-R38030B-ISO12	160	FLH-R52030B-12iM	168	FLH-R69030B-70Z	113	FLH-R80530B-276F
96W-R38030B-B	184	FLH-R10030B-ISO12	160	FLH-R38030B-ISO25	160	FLH-R52030B-12iS	168	FLH-R69030B-95K	113	FLH-R80530B-70i
96W-R38030B-C	184	FLH-R10030B-ISO25	160	FLH-R38030B-ISO40	160	FLH-R52030B-276F	113, 167	FLH-R69030B-95M	113	FLH-R80530B-70Y
96W-R38030B-G	184	FLH-R10030B-ISO40	160	FLH-R38030B-ISO80	160	FLH-R52030B-40iL	168	FLH-R69030B-95N	113	FLH-R80530B-70Z
96W-R51230B-B	179	FLH-R10030B-ISO80	160	FLH-R48030B-276F	113	FLH-R52030B-40iS	168	FLH-R69030B-I1500	112	FLH-R80530B-95K
96W-R51230B-C	179	FLH-R33230B-12iM	168	FLH-R48030B-70i	113	FLH-R52030B-65i	168	FLH-R69030B-IS120	112	FLH-R80530B-95M
96W-R51230B-G	179	FLH-R33230B-12iS	168	FLH-R48030B-70Y	113	FLH-R52030B-70i	113, 167	FLH-R69030B-IS220	112	FLH-R80530B-95N
96W-R52030B-B	186	FLH-R33230B-12U	167	FLH-R48030B-70Z	113	FLH-R52030B-70Y	113, 167	FLH-R69030B-IS330	112	FLH-R80530B-I1500
96W-R52030B-C	186	FLH-R33230B-25X	167	FLH-R48030B-95K	113	FLH-R52030B-70Z	113, 167	FLH-R69030B-IS750	112	FLH-R80530B-IS120
	186	FLH-R33230B-276F	167		113		168		112	
96W-R52030B-G				FLH-R48030B-95M		FLH-R52030B-75iL		FLH-R69030B-ISO04		FLH-R80530B-IS220
96W-R60530B-B	179	FLH-R33230B-40iL	168	FLH-R48030B-95N	113	FLH-R52030B-75iM	168	FLH-R69030B-ISO12	112	FLH-R80530B-IS330
96W-R60530B-C	179	FLH-R33230B-40iS	168	FLH-R48030B-I1500	112	FLH-R52030B-75iS	168	FLH-R69030B-ISO25	112	FLH-R80530B-IS750
96W-R60530B-G	179	FLH-R33230B-65i	168	FLH-R48030B-IS120	112	FLH-R52030B-95K	113, 167	FLH-R69030B-ISO40	112	FLH-R80530B-ISO04
96W-R66030B-B	178	FLH-R33230B-70i	167	FLH-R48030B-IS220	112	FLH-R52030B-95M	113, 167	FLH-R69030B-ISO80	112	FLH-R80530B-ISO12
96W-R66030B-C	178	FLH-R33230B-70Y	167	FLH-R48030B-IS330	112	FLH-R52030B-95N	113, 167	FLH-R69230B-276F	113	FLH-R80530B-ISO25
96W-R66030B-G	178	FLH-R33230B-70Z	167	FLH-R48030B-IS750	112	FLH-R52030B-I1500	112	FLH-R69230B-70i	113	FLH-R80530B-ISO40
96W-R66430B-B	181	FLH-R33230B-75iL	168	FLH-R48030B-ISO04	112	FLH-R52030B-IS120	112	FLH-R69230B-70Y	113	FLH-R80530B-ISO80
96W-R66430B-C	181	FLH-R33230B-75iM	168	FLH-R48030B-ISO12	112	FLH-R52030B-IS220	112	FLH-R69230B-70Z	113	KAD-1008
96W-R66430B-G	181	FLH-R33230B-75iS	168	FLH-R48030B-ISO25	112	FLH-R52030B-IS330	112	FLH-R69230B-95K	113	KAD-1014
96W-R66530B-B	186	FLH-R33230B-95K	167	FLH-R48030B-ISO40	112	FLH-R52030B-IS750	112	FLH-R69230B-95M	113	KAD-1016
96W-R66530B-C	186	FLH-R33230B-95M	167	FLH-R48030B-ISO80	112	FLH-R52030B-ISO04	112	FLH-R69230B-95N	113	R00030B
96W-R66530B-G	186	FLH-R33230B-95N	167	FLH-R49030B-276F	113	FLH-R52030B-ISO12	112	FLH-R69230B-I1500	112	R00130B
96W-R70030B-B	186	FLH-R33230B-I1500	160	FLH-R49030B-70i	113	FLH-R52030B-ISO25	112	FLH-R69230B-IS120	112	R00430B
96W-R70030B-C	186	FLH-R33230B-IS120	160	FLH-R49030B-70Y	113	FLH-R52030B-ISO40	112	FLH-R69230B-IS220	112	R02130B
96W-R70030B-G	186	FLH-R33230B-IS220	160	FLH-R49030B-70Z	113	FLH-R52030B-ISO80	112	FLH-R69230B-IS330	112	R10010B
96W-R802830B-B	187	FLH-R33230B-IS330	160	FLH-R49030B-95K	113	FLH-R66430B-12iM	168	FLH-R69230B-IS750	112	R10013B
96W-R802830B-C	187	FLH-R33230B-IS750	160	FLH-R49030B-95M	113	FLH-R66430B-12iS	168	FLH-R69230B-ISO04	112	R10014B
96W-R802830B-G	187	FLH-R33230B-ISO04	160	FLH-R49030B-95N	113	FLH-R66430B-12U	167	FLH-R69230B-ISO12	112	R10015B
AUT-0010	173	FLH-R33230B-ISO12	160	FLH-R49030B-I1500	112	FLH-R66430B-25X	167	FLH-R69230B-ISO25	112	R10015D
AUT-0011	173	FLH-R33230B-ISO25	160	FLH-R49030B-IS120	112	FLH-R66430B-276F	167	FLH-R69230B-ISO40		R10017B
AUT-0043	173	FLH-R33230B-ISO40	160	FLH-R49030B-IS220	112	FLH-R66430B-40iL	168	112 FLH-R69230B-ISO80	112	R10019B
AUT-0044	173	FLH-R33230B-ISO80	160	FLH-R49030B-IS330	112	FLH-R66430B-40iS	168	FLH-R69530B-276F	113	R10023B
AUT-0045	173	FLH-R35030B-12iM	168	FLH-R49030B-IS750	112	FLH-R66430B-65i	168	FLH-R69530B-70i	113	R10030A
AUT-0046	173	FLH-R35030B-12iS	168	FLH-R49030B-ISO04	112	FLH-R66430B-70i	167	FLH-R69530B-70Y	113	R10030B
AUT-0047	173	FLH-R35030B-12U	167	FLH-R49030B-ISO12	112	FLH-R66430B-70Y	167	FLH-R69530B-70Z	113	R10030D
AUT-0060-010	161	FLH-R35030B-25X	167	FLH-R49030B-ISO25	112	FLH-R66430B-70Z	167	FLH-R69530B-95K	113	R10030M
AUT-0060-060	161	FLH-R35030B-276F	167	FLH-R49030B-ISO40	112	FLH-R66430B-75iL	168	FLH-R69530B-95M	113	R10040A
AUT-0068-004	163	FLH-R35030B-40iL	168	FLH-R49030B-ISO80	112	FLH-R66430B-75iM	168	FLH-R69530B-95N	113	R10040B
AUT-0068-010	163	FLH-R35030B-40iS	168	FLH-R51030B-276F	113	FLH-R66430B-75iS	168	FLH-R69530B-I1500	112	R10040D
AUT-0068-040	163	FLH-R35030B-65i	168	FLH-R51030B-70i	113	FLH-R66430B-95K	167	FLH-R69530B-IS120	112	R10040H
AUT-0068-080	163	FLH-R35030B-70i	167	FLH-R51030B-70Y	113	FLH-R66430B-95M	167	FLH-R69530B-IS220	112	R10050B
AUT-0068-120	163	FLH-R35030B-70Y	167	FLH-R51030B-70Z	113	FLH-R66430B-95N	167	FLH-R69530B-IS330	112	R10050H
AUT-0090-150	161	FLH-R35030B-70Z	167	FLH-R51030B-95K	113	FLH-R66430B-I1500	160	FLH-R69530B-IS750	112	R10060B
AUT-0090-700	161	FLH-R35030B-702	168	FLH-R51030B-95K	113	FLH-R66430B-IS120	160	FLH-R69530B-IS004	112	R10060H
							160			
AUT-0128-12	173	FLH-R35030B-75iM	168	FLH-R51030B-95N	113	FLH-R66430B-IS220			112	R10070A
AUT-0129-24	173	FLH-R35030B-75iS	168	FLH-R51030B-I1500	112	FLH-R66430B-IS330	160	FLH-R69530B-ISO25	112	R10070B
В10007В	142	FLH-R35030B-95K	167	FLH-R51030B-IS120	112	FLH-R66430B-IS750	160	FLH-R69530B-ISO40	112	R10070D


112	R10072H	134	S10008E-A	141
113	R12030B	134, 147	S10008M-A	141
113	R23030B	49	S10008T-A	141
113	R23530B	147	S10010G-A	141
113	R24030B	48	S10030B-A	142
113	R24530B	48	S10030G-A	142
113	R30830B	146	S10034B-A	142
113	R31030B	146	S10040B-A	142
112	R32030B	146	S10063B-A	142
112	R32130B	146	SIM-0002-006	173
112	R32730B	146	SIM-0003-012	173
112	R33030B	146	SIM-0004-020	173
112	R33230B	146	SIM-0006-060	173
112	R33330B	146	SIM-0007-001	173
112	R33530B	146	SIM-0008-003	173
112	R33830B	146	SIM-0009-150	173
112	R34030B	146	SPC-AUT-0014-10G	185
112	R34130B	146	SPC-AUT-0014-10P	185
113	R35030B	125	SPC-AUT-0053-10G	185
113	R35030B	147	SPC-AUT-0053-10P	185
113	R38030B	146	SPC-AUT-0054-10G	185
113	R38130B	147	SPC-AUT-0054-10P	185
113	R390-100	22	SPC-AUT-0055-10G	185
113	R44030B	125	SPC-AUT-0055-10P	185
113	R48030B	88, 89, 112, 125	SPC-R023830B-10G	187
112	R49030B	88, 89, 112, 125	SPC-R023830B-10P	187
112	R50030B	125	SPC-R028030B-10G	187
112	R510-100	20	SPC-R028030B-10P	187
112	R51030B	88, 89, 114	SPC-R10030B-10G	185
112	R51230B	125	SPC-R10030B-10P	185
112	R66430B	125	SPC-R31030B-10G	184
112	R51430B	146	SPC-R31030B-10P	184
112	R52030B	88, 89, 112, 125	SPC-R31930B-10G	181
112	R52130B	147, 148	SPC-R31930B-10P	181
112	R52230B	53	SPC-R33229G-10G	181
115	R53030B	146	SPC-R33229G-10P	181
115		140	SPC-R34030B-10G	
	R60030B			184
115	R60430B	148	SPC-R34030B-10P	184
115	R60530B	127	SPC-R35530B-10G	181
115	R60530B	66	SPC-R35530B-10P	181
115	R61030B	125	SPC-R38030B-10G	184
115	R61530B	146	SPC-R38030B-10P	184
114	R65530B	148	SPC-R51230B-10G	179
114	R66030B	62, 125	SPC-R51230B-10P	179
114	R66230B	148	SPC-R52030B-10G	186
114	R66430B	148	SPC-R52030B-10P	186
114	R66730B	59	SPC-R60530B-10G	179
114	R67530B	146	SPC-R60530B-10P	179
114	R68530B	68, 125	SPC-R66030B-10G	178
114	R69030B	88, 89, 112	SPC-R66030B-10P	178
114	R69230B	88, 89, 112	SPC-R66430B-10G	181
114	R69530B	88, 89, 112	SPC-R66430B-10P	181
163	R70030B	125	SPC-R66530B-10G	186
163	R70130B	148	SPC-R66530B-100	186
163	R70530B	52	SPC-R70030B-10G	186
146	R70630B	53	SPC-R70030B-10P	186
146	R70730B	54	SPC-R802830B-10G	187
146	R71030B	125	SPC-R802830B-10P	187
146	R723-100	20	SPE-AUT-0014-01B	185
134	R75530B	63, 125	SPE-AUT-0014-01C	185
134	R76630B	148	SPE-AUT-0014-03G	185
134	R79030B	88, 89, 112	SPE-AUT-0014-03P	185
134	R79230B	88, 89, 112	SPE-AUT-0014-06P	185
134	R80530B	88, 89, 112	SPE-AUT-0014-06S	185
134	R815-100	20	SPE-AUT-0014-06U	185
134	R820-100	20	SPE-AUT-0014-12U	185
134	S10001G-A	141	SPE-AUT-0014-20X	185
134	S10002G-A	141	SPE-AUT-0053-01B	185
134	S10003E-A	141	SPE-AUT-0053-01C	185
134	S10003F-A	141	SPE-AUT-0053-03G	185
134	S10003G-A	141	SPE-AUT-0053-03P	185
134	S10003M-A	141	SPE-AUT-0053-06P	185
134	S10005E-A	141	SPE-AUT-0053-06S	185
134	S10005F-A	141	SPE-AUT-0053-06U	185
134	S10005G-A	141	SPE-AUT-0053-12U	185
134	S10005M-A	141	SPE-AUT-0053-20X	185
134	S10007B-A	141	SPE-AUT-0054-01B	185
134	S10007E-A	141	SPE-AUT-0054-01C	185
134	S10007G-A	141	SPE-AUT-0054-03G	185
134	S10007M-A	141	SPE-AUT-0054-03P	185
134	S10007T-A	141	SPE-AUT-0054-06P	185
134	S10008B-A	141	SPE-AUT-0054-06S	185

Product Numbers Index (Con't)

SPE-AUT-0054-06U	185	SPE-R35530B-12U	181	SPE-R66430B-12U	181	SPL-R35030B-60K
SPE-AUT-0054-12U	185	SPE-R35530B-20X	181	SPE-R66430B-20X	181	SPL-R38030B-10X
SPE-AUT-0054-20X	185	SPE-R38030B-01B	184	SPE-R66530B-01B	186	SPL-R38030B-60K
SPE-AUT-0055-01B	185	SPE-R38030B-01C	184	SPE-R66530B-01C	186	SPL-R52030B-10X
SPE-AUT-0055-01C	185	SPE-R38030B-03G	184	SPE-R66530B-03G	186	SPL-R52030B-60K
SPE-AUT-0055-03G	185	SPE-R38030B-03P	184	SPE-R66530B-03P	186	SPS-AUT-0053-J
SPE-AUT-0055-03P	185	SPE-R38030B-06P	184	SPE-R66530B-06P	186	SPS-AUT-0053-J
SPE-AUT-0055-06P	185	SPE-R38030B-06S	184	SPE-R66530B-06S	186	SPS-AUT-0053-Q
SPE-AUT-0055-06S	185	SPE-R38030B-06U	184	SPE-R66530B-06U	186	SPS-AUT-0053-Q
SPE-AUT-0055-06U	185	SPE-R38030B-12U	184	SPE-R66530B-12U	186	SPS-AUT-0053-R
SPE-AUT-0055-12U	185	SPE-R38030B-20X	184	SPE-R66530B-20X	186	SPS-AUT-0053-R
SPE-AUT-0055-20X	185	SPE-R48030B-03G	113	SPE-R69030B-03G	113	SPS-AUT-0053-R SPS-AUT-0054-J
SPE-R023830B-01B	185	SPE-R48030B-03G	113	SPE-R69030B-03G	113	SPS-AUT-0054-J
SPE-R023830B-01C	187	SPE-R48030B-05P	113	SPE-R69030B-06P	113	SPS-AUT-0054-J
SPE-R023830B-03G	187		113	SPE-R69030B-065	113	SPS-AUT-0054-0
	187	SPE-R48030B-06S SPE-R48030B-06U	113		113	SPS-AUT-0054-Q
SPE-R023830B-03P SPE-R023830B-06P				SPE-R69030B-06U		SPS-AUT-0054-Q
	187	SPE-R48030B-12U	113	SPE-R69030B-12U SPE-R69030B-20X	113	
SPE-R023830B-06S	187	SPE-R48030B-20X	113		113	SPS-AUT-0054-R
SPE-R023830B-06U	187	SPE-R49030B-03G	113	SPE-R69230B-03G	113	SPS-AUT-0054-R
SPE-R023830B-12U	187	SPE-R49030B-03P	113	SPE-R69230B-03P	113	SPS-AUT-0054-R
SPE-R023830B-20X	187	SPE-R49030B-06P	113	SPE-R69230B-06P	113	SPS-AUT-0055-J
SPE-R028030B-01B	187	SPE-R49030B-06S	113	SPE-R69230B-06S	113	SPS-AUT-0055-J
SPE-R028030B-01C	187	SPE-R49030B-06U	113	SPE-R69230B-06U	113	SPS-AUT-0055-Q
SPE-R028030B-03G	187	SPE-R49030B-12U	113	SPE-R69230B-12U	113	SPS-AUT-0055-Q
SPE-R028030B-03P	187	SPE-R49030B-20X	113	SPE-R69230B-20X	113	SPS-AUT-0055-R
SPE-R028030B-06P	187	SPE-R51030B-03G	113	SPE-R69530B-03G	113	SPS-AUT-0055-R
SPE-R028030B-06S	187	SPE-R51030B-03P	113	SPE-R69530B-03P	113	SPS-R10030B-J
SPE-R028030B-06U	187	SPE-R51030B-06P	113	SPE-R69530B-06P	113	SPS-R10030B-Q
SPE-R028030B-12U	187	SPE-R51030B-06S	113	SPE-R69530B-06S	113	SPS-R10030B-R
SPE-R028030B-20X	187	SPE-R51030B-06U	113	SPE-R69530B-06U	113	SPS-R31930B-J
SPE-R10030B-01B	185	SPE-R51030B-12U	113	SPE-R69530B-12U	113	SPS-R31930B-Q
SPE-R10030B-01C	185	SPE-R51030B-20X	113	SPE-R69530B-20X	113	SPS-R31930B-R
SPE-R10030B-03G	185	SPE-R51230B-01B	179	SPE-R70030B-01B	186	SPS-R33229G-J
SPE-R10030B-03P	185	SPE-R51230B-01C	179	SPE-R70030B-01C	186	SPS-R33229G-Q
SPE-R10030B-06P	185	SPE-R51230B-03G	179	SPE-R70030B-03G	186	SPS-R33229G-R
SPE-R10030B-06S	185	SPE-R51230B-03P	179	SPE-R70030B-03P	186	SPS-R35530B-J
SPE-R10030B-06U	185	SPE-R51230B-06P	179	SPE-R70030B-06P	186	SPS-R35530B-Q
SPE-R10030B-12U	185	SPE-R51230B-06S	179	SPE-R70030B-06S	186	SPS-R35530B-R
SPE-R10030B-20X	185	SPE-R51230B-06U	179	SPE-R70030B-06U	186	SPS-R52030B-J
SPE-R31030B-01B	184	SPE-R51230B-12U	179	SPE-R70030B-12U	186	SPS-R52030B-Q
SPE-R31030B-01C	184	SPE-R51230B-20X	179	SPE-R70030B-20X	186	SPS-R52030B-R
SPE-R31030B-03G	184	SPE-R52030B-01B	186	SPE-R79030B-03G	113	SPS-R66430B-J
SPE-R31030B-03P	184	SPE-R52030B-01C	186	SPE-R79030B-03P	113	SPS-R66430B-Q
SPE-R31030B-06P	184	SPE-R52030B-03G	113	SPE-R79030B-06P	113	SPS-R66430B-R
SPE-R31030B-06S	184	SPE-R52030B-03G	186	SPE-R79030B-06S	113	SPS-R66530B-J
SPE-R31030B-06U	184	SPE-R52030B-03P	113	SPE-R79030B-06U	113	SPS-R66530B-Q
SPE-R31030B-12U	184	SPE-R52030B-03P	186	SPE-R79030B-12U	113	SPS-R66530B-R
SPE-R31030B-20X	184	SPE-R52030B-06P	113	SPE-R79030B-20X	113	SPS-R70030B-J
SPE-R31930B-01B	181	SPE-R52030B-06P	186	SPE-R79230B-03G	113	SPS-R70030B-Q
SPE-R31930B-01C	181	SPE-R52030B-06S	113	SPE-R79230B-03P	113	SPS-R70030B-R
SPE-R31930B-03G	181	SPE-R52030B-06S	186	SPE-R79230B-06P	113	TLA-R10011B-323
SPE-R31930B-03P	181	SPE-R52030B-06U	113	SPE-R79230B-06S	113	TLA-R30411B-303
SPE-R31930B-06P	181	SPE-R52030B-06U	186	SPE-R79230B-06U	113	TLG-R10011B-124
SPE-R31930B-06S	181	SPE-R52030B-12U	113, 167	SPE-R79230B-12U	113	TLG-R10011B-323
SPE-R31930B-06U	181	SPE-R52030B-12U	186	SPE-R79230B-20X	113	TLG-R10011B-333
SPE-R31930B-12U	181	SPE-R52030B-20X	113, 167	SPE-R802830B-01B	187	TLG-R10011B-341
SPE-R31930B-20X SPE-R33229G-01B	181	SPE-R52030B-20X	186	SPE-R802830B-01C	187	TLG-R10011B-353
	181	SPE-R60530B-01B	179	SPE-R802830B-03G	187	TLG-R10011B-423
SPE-R33229G-01C SPE-R33229G-03G	181 181	SPE-R60530B-01C SPE-R60530B-03G	179 179	SPE-R802830B-03P SPE-R802830B-06P	187 187	TLG-R10011B-424 TLG-R10011B-527
SPE-R33229G-03P	181	SPE-R60530B-03P	179	SPE-R802830B-06S	187	TLG-R10011B-624
SPE-R33229G-06P SPE-R33229G-06S	181 181	SPE-R60530B-06P	179 179	SPE-R802830B-06U	187 187	TLG-R10011B-723 TLG-R23511B-203
	181	SPE-R60530B-06S		SPE-R802830B-12U		TLG-R23511B-203
SPE-R33229G-06U	181	SPE-R60530B-06U	179 179	SPE-R802830B-20X SPE-R80530B-03G	187	TLG-R23511B-303 TLG-R30411B-213
SPE-R33229G-12U	181	SPE-R60530B-12U	179		113 113	
SPE-R33229G-20X		SPE-R60530B-20X		SPE-R80530B-03P		TLG-R30411B-303
SPE-R34030B-01B SPE-R34030B-01C	184 184	SPE-R66030B-01B SPE-R66030B-01C	178 178	SPE-R80530B-06P SPE-R80530B-06S	113 113	TLG-R30411B-341 TLG-R31011B-203
SPE-R34030B-03G	184	SPE-R66030B-03G	178	SPE-R80530B-060	113	TLG-R31011B-303
SPE-R34030B-03B	184	SPE-R66030B-03P	178	SPE-R80530B-000	113	TLG-R32611B-303
SPE-R34030B-06P	184	SPE-R66030B-06P	178	SPE-R80530B-20X	113	TLG-R32630B-203
SPE-R34030B-06S	184	SPE-R66030B-06S	178	SPE-R80530B-20X SPL-0009-010	161	TLG-R32030B-203
SPE-R34030B-060 SPE-R34030B-060	184	SPE-R66030B-060	178	SPL-0009-010 SPL-0012-060	161	TLG-R35030B-203
SPE-R34030B-060 SPE-R34030B-12U	184	SPE-R66030B-060	178	SPL-0012-060 SPL-R10030B-065	161	TLG-R38030B-203
SPE-R34030B-120 SPE-R34030B-20X	184	SPE-R66030B-20X	178	SPL-R10030B-100	161	TLG-R38030B-203
SPE-R35530B-01B	184	SPE-R66430B-01B	178	SPL-R10030B-100	161	TLG-R52030B-203
SPE-R35530B-01C	181	SPE-R66430B-01C	181	SPL-R10030B-270	161	TLG-R52030B-203
SPE-R35530B-03G	181	SPE-R66430B-03G	181	SPL-R10030B-60K	161	TLGSR10011B-350
SPE-R35530B-03P	181	SPE-R66430B-030	181	SPL-R10030B-60Y	161	TLGSR10011B-353
SPE-R35530B-06P	181	SPE-R66430B-06P	181	SPL-R33230B-10X	161	TLGSR10011B-333
SPE-R35530B-06S	181	SPE-R66430B-06S	181	SPL-R33230B-60K	161	
			101		.01	
SPE-R35530B-06U	181	SPE-R66430B-06U	181	SPL-R35030B-10X	161	

SiliaMetS® Metal Scavengers

SILIC

SILICYCLE.COM TOLL-FREE: 1 877.SILICYCLE (NORTH AMERICA ONLY) INFO@SILICYCLE.COM 874.0355 FAX: 1 418 TEL.: 1 418 874.0054

SiliaBond[®] C18

Chromatographic Phase

Unmatched quality and

Very highly hydrophobic

performance

• A homogeneous

functionalized layer

A unique grafting

reproducible results

• An unprecedented

endcapping efficiency

Incomparable lot-to-lot

method ensuring

reproducibility

quantities (multi-ton scale)

• The quality of a

monofunctional C18

• Available in large

C18 phase

As a recognized industry leader in the development, manufacturing and commercialization of innovative silica gel products, and with multi-ton manufacturing capability, SiliCycle® is your partner of choice for all your metal removal, catalysis, synthesis, and purification requirements.

SILICYCLE UltraPure SILICA GELS

SiliaCat[®]

Wide range of

Heck, and Stille)

waste streams

highly stable

organic coupling and

(Suzuki, Sonogashira,

catalysts for cleaner

products and cleaner

Ideal for batch or

Cost efficient and

from grams to multi-

kilograms quantities

Silia*Flash®*

Irregular Silica Gels

• High purity irregular Gel

· Very low level of fines

Neutral pH, low metal

content, and controlled

water level content

• Tight particle size

distribution

• Lot-to-lot

reproducibility

hydrogenation reactions

• SiliaCat silica-supported

flowthrough applications

Reusable and leach proof

• Available in sizes ranging

Heterogeneous Catalysts

Silia*MetS*® Metal Scavengers

 No leaching: no API contamination High selectivity:

total recovery of the API · Very good metal affinity: efficient for a wide range of metal catalysts

• Solvent compatibility: can be used in any any solvents (pH 2 to 12)

> • Fast kinetic even at room temperature

• Easily scalable

 Thermally and mechanically stable

 Ease of use and flexible formats

 Cost efficient: low cost per gram of metal scavenged • Available in large quantities (multi-ton scale)

Silia Plate **TLC** Plates

 Analytical and preparative TLC plates

 Different sizes and choice of backings

• Normal, reversed and specialty phases

SiliaBond® Functionalized Silica Gels

SiliaChrom[®]

• Broad pH range (0,8-12,0)

• Wide variety of chemistries

Excellent column effiency

Long column lifetime

High surface coverage

available

Low bleed

Silia*Prep*"

Solid Phase Extraction

Wide choice of SPE

cartridge formats,

• Normal, reversed,

and mixed-mode phases

• Certified & Specialty

phases (scavengers,

reagents, etc.)

96-well plates

HPLC Columns

stability) Selective nucleophile and electrophile

 High resolution chromatographic phases

organic synthesis • Thermally stable and microwave compatible

Available in large

auantities

No leaching (chemical

scavengers

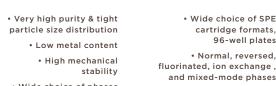
Supported reagents for

(multi-ton scale)

reproducibility

commercial systems Reversed and specialty

phases available


• High resolution &

 Ultra high performance cartridges available (SiliaSep HP)

• Compatible with all

available (normal. reversed & specialty)

Printed in Quebec, Canada, © SiliCycle Inc.

• Wide choice of phases

SiliaSphere[®] Spherical Silica Gels

